Advertisement

Maximization of Homogeneous Polynomials over the Simplex and the Sphere: Structure, Stability, and Generic Behavior

  • Faizan AhmedEmail author
  • Georg Still
Article
  • 22 Downloads

Abstract

The paper deals with the problem of maximizing a (nonconvex) homogeneous polynomial over the unit simplex. This program is directly related to the concept of evolutionarily stable strategies in biology. Optimality conditions are studied together with related stability properties. It is shown that generically any local maximizer is an evolutionarily stable strategy. We further extend these results to the case of polynomial optimization over the sphere.

Keywords

Optimization over the simplex Homogeneous polynomials Evolutionarily stable strategies Stability of maximizers Genericity properties 

Mathematics Subject Classification

90C26 90C31 90C46 91A22 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for many valuable comments and suggestions.

References

  1. 1.
    Bomze, I.M.: On standard quadratic optimization problems. J. Glob. Optim. 13(4), 369–387 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Programm. 39(2), 117–129 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bomze, I., Schachinger, W., Ullrich, R.: The complexity of simple models—a study of worst and typical hard cases for the standard quadratic optimization problem. Math. Oper. Res. 43(2), 651–674 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bomze, I.M., De Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24(2), 163–185 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Klerk, E., Laurent, M., Sun, Z.: An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution. SIAM J. Optim. 25(3), 1498–1514 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. J. ACM: JACM 60(6), 45 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Qi, L., Teo, K.L.: Multivariate polynomial minimization and its application in signal processing. J. Glob. Optim. 26(4), 419–433 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Faybusovich, L.: Global optimization of homogeneous polynomials on the simplex and on the sphere. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 109–121. Springer, Berlin (2004)CrossRefGoogle Scholar
  10. 10.
    He, S., Li, Z., Zhang, S.: Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math. Program. 125(2), 353–383 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhang, X., Zhou, G., Caccetta, L., Alqahtani, M.: Approximation algorithms for nonnegative polynomial optimization problems over unit spheres. Front Math China 12(26), 1409–1426 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhou, G., Caccetta, L., Teo, K.L., Wu, S.Y.: Nonnegative polynomial optimization over unit spheres and convex programming relaxations. SIAM J. Optim. 22(3), 987–1008 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Smith, J.M., Price, G.R.: The logic of animal conflict. Nature 246(5427), 15–18 (1973)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bomze, I.M.: Non-cooperative two-person games in biology: a classification. Int. J. Game Theory 15(1), 31–57 (1986)CrossRefzbMATHGoogle Scholar
  15. 15.
    Bomze, I.M.: Regularity versus degeneracy in dynamics, games, and optimization: a unified approach to different aspects. SIAM Rev. 44(3), 394–414 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Palm, G.: Evolutionary stable strategies and game dynamics for n-person games. J. Math. Biol. 19(3), 329–334 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Broom, M., Cannings, C., Vickers, G.: Multi-player matrix games. Bull. Math. Biol. 59(5), 931–952 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Bomze, I.M.: Detecting all evolutionarily stable strategies. J. Optim. Theory Appl. 75(2), 313–329 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Springer, Berlin (1984)zbMATHGoogle Scholar
  20. 20.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Jittorntrum, K.: Solution point differentiability without strict complementarity in nonlinear programming. In: Fiacco, A.V. (ed.) Sensitivity, Stability and Parametric Analysis, vol. 21. Mathematics Programme of Study. Springer, Berlin, Heidelberg (1984)Google Scholar
  22. 22.
    Smith, J.M.: The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47(1), 209–221 (1974)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bukowski, M., Miekisz, J.: Evolutionary and asymptotic stability in symmetric multi-player games. Int. J. Game Theory 33(1), 41–54 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ahmed, F.: Copositive Programming and Related Problems. Ph.D. thesis, University of Twente, The Netherlands (2014)Google Scholar
  25. 25.
    Bishop, D., Cannings, C.: A generalized war of attrition. J. Theor. Biol. 70(1), 85–124 (1978)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Cannings, C., Vickers, G.T.: Patterns of ESS’s II. J. Theor. Biol. 132(4), 409–420 (1988)CrossRefGoogle Scholar
  27. 27.
    Faigle, U., Kern, W., Still, G.: Algorithmic Principles of Mathematical Programming, vol. 24. Springer, Berlin (2002)zbMATHGoogle Scholar
  28. 28.
    Haigh, J.: The existence of evolutionary stable strategies. J. Theor. Biol. 47(1), 209–221 (1974). (Appendix to “The theory of games and the evolution of animal conflicts”) CrossRefGoogle Scholar
  29. 29.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2006)CrossRefzbMATHGoogle Scholar
  30. 30.
    Robinson, S.M.: Generalized Equations and Their Solutions, Part II: Applications to Nonlinear Programming, pp. 200–221. Springer, Berlin (1982)zbMATHGoogle Scholar
  31. 31.
    Jongen, H.T., Twilt, F., Jonker, P.: Nonlinear Optimization in Finite Dimensions. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  32. 32.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications: III: Variational Methods and Optimization. Springer, Berlin (2013)Google Scholar
  33. 33.
    Cartwright, D., Sturmfels, B.: The number of eigenvalues of a tensor. Linear Algebra Appl. 438(2), 942–952 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: 2005 1st IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, pp. 129–132. IEEE (2005)Google Scholar
  35. 35.
    Luo, Z., Qi, L., Ye, Y.: Linear operators and positive semidefiniteness of symmetric tensor spaces. Sci. China Math. 58(1), 197–212 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ling, C., Nie, J., Qi, L., Ye, Y.: Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20(3), 1286–1310 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Chang, K., Qi, L., Zhang, T.: A survey on the spectral theory of nonnegative tensors. Numer. Linear Algebra Appl. 20(6), 891–912 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsInstitute of Space TechnologyIslamabadPakistan
  2. 2.Department of MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations