Advertisement

Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints

  • Jiawei Chen
  • Elisabeth KöbisEmail author
  • Jen-Chih Yao
Article

Abstract

In this paper, we investigate a robust nonsmooth multiobjective optimization problem related to a multiobjective optimization with data uncertainty. We firstly introduce two kinds of generalized convex functions, which are not necessary to be convex. Robust necessary optimality conditions for weakly robust efficient solutions and properly robust efficient solutions of the problem are established by a generalized alternative theorem and the robust constraint qualification. Further, robust sufficient optimality conditions for weakly robust efficient solutions and properly robust efficient solutions of the problem are also derived. The Mond–Weir-type dual problem and Wolfe-type dual problem are formulated. Finally, we obtain the weak, strong and converse robust duality results between the primal one and its dual problems under the generalized convexity assumptions.

Keywords

Robust nonsmooth multiobjective optimization Uncertain nonsmooth multiobjective optimization Robust optimality conditions Robust duality 

Mathematics Subject Classification

65K10 90C25 

Notes

Acknowledgements

The authors are grateful to the anonymous referees, the Associate Editor and Professor Giannessi for their constructive comments and valuable suggestions, which have helped to improve the paper. This research was partially supported by the MOST 106-2923-E-039-001-MY3, the Natural Science Foundation of China (11401487), the Basic and Advanced Research Project of Chongqing (cstc2016jcyjA0239), the China Postdoctoral Science Foundation (2015M582512) and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Beck, A., Ben-Tal, A.: Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37, 1–6 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton series in applied mathematics. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.: Robust optimization-methodology and applications. Math. Programm. Ser. B. 92, 453–480 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Tal, A., Nemirovski, A.: A selected topics in robust convex optimization. Math. Programm. Ser. B. 112, 125–158 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Jeyakumar, V., Li, G.: Strong duality in robust convex programming: complete characterizations. SIAM J. Optim. 20, 3384–3407 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jeyakumar, V., Li, G., Lee, G.M.: Robust duality for generalized convex programming problems under data uncertainty. Nonlinear Anal. 75, 1362–1373 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jeyakumar, V., Lee, G.M., Li, G.: Characterizing robust solutions sets convex programs under data uncertainty. J. Optim. Theory Appl. 64, 407–435 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lee, G.M., Yao, J.C.: On solution sets for robust optimization problems. J. Nonlinear Convex Anal. 17, 957–966 (2016)MathSciNetGoogle Scholar
  9. 9.
    Khan, A.A., Tammer, Chr, Zălinescu, C.: Set-Valued Optimization: An Introduction with Applications. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gunawan, S., Azarm, S.: Multiobjective robust optimization using a sensitivity region concept. Struct. Multidiscip. Optim. 29, 50–60 (2005)CrossRefGoogle Scholar
  11. 11.
    Deb, K., Gupta, H.: Introducing robustness in multiobjective optimization. Evol. Comput. 14, 463–494 (2006)CrossRefGoogle Scholar
  12. 12.
    Klamroth, K., Köbis, K., Schöbel, A., Tammer, Chr: A unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionals. Optimization 62(5), 649–671 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kuroiwa, D., Lee, G.M.: On robust multiobjective optimization. Vietnam J. Math. 40, 305–317 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kim, M.H.: Duality theorem and vector saddle point theorem for robust multiobjective optimization problems. Commun. Korean Math. Soc. 28, 597–602 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fliege, J., Werner, R.: Robust multiobjective optimization & applications in portfolio optimization. Eur. J. Oper. Res. 234, 422–433 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goberna, M.A., Jeyakumar, V., Li, G., Vicentre-Perez, J.: Robust solutions of multiobjective linear semi-infinite programs under constraint data uncertainty. SIAM J. Optim. 24, 1402–1419 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ide, J., Köbis, E.: Concepts of efficiency for uncertain multiobjective problems based on set order relations. Math. Meth. Oper. Res. 80, 99–127 (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Goberna, M.A., Jeyakumar, V., Li, G., Vicentre-Perez, J.: Robust solutions to multi-objective linear programs with uncertain data. Eur. J. Oper. Res. 242, 730–743 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chuong, T.D.: Optimality and duality for robust multiobjective optimization problems. Nonlinear Anal. 134, 127–143 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ide, J., Schöbel, A.: Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectr. 38, 235–271 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lee, J.H., Lee, G.M.: On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems. Ann. Oper. Res. 269, 419–438 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Klamroth, K., Köbis, E., Schöbel, A., Tammer, C.: A unified approach to uncertain optimization. Eur. J. Oper. Res. 260, 403–420 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bokrantz, R., Fredriksson, A.: Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization. Eur. J. Oper. Res. 262, 682–692 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chen, J.W., Cho, Y.J., Kim, J.K., Li, J.: Multiobjective optimization problems with modified objective functions and cone constraints and applications. J. Global Optim. 49, 137–147 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Suneja, S.K., Khurana, S., Bhatia, M.: Optimality and duality in vector optimization involving generalized type I functions over cones. J. Global Optim. 49, 23–35 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Luc, D.T.: Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin (1989)Google Scholar
  27. 27.
    Göpfert, A., Riahi, H., Tammer, Chr, Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)zbMATHGoogle Scholar
  28. 28.
    Chen, G.Y., Huang, X.X., Yang, X.O.: Vector Optimization: Set-valued and Variational Analysis. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin (2005)Google Scholar
  29. 29.
    Illés, T., Kassay, G.: Theorems of the alternative and optimality conditions for convexlike and general convexlike programming. J. Optim. Theory Appl. 101, 243–257 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)zbMATHGoogle Scholar
  31. 31.
    Göpfert, A., Tammer, C., Riahi, H., Zǎlinescu, C.: Variational Methods in Partially Ordered Spaces. Springer-Verlag, New York (2003)zbMATHGoogle Scholar
  32. 32.
    Frenk, J.B.G., Kassay, G.: On classes of generalized convex functions, Gordan–Farkas type theorems, and Lagrangian duality. J. Optim. Theory Appl. 102, 315–343 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Giannessi, F.: Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions. Springer, New York (2005)zbMATHGoogle Scholar
  34. 34.
    Craven, B.D.: Control and Optimization. Chapman & Hall, London (1995)CrossRefzbMATHGoogle Scholar
  35. 35.
    Lee, G.M., Son, P.T.: On nonsmooth optimality theorems for robust optimization problems. Bull. Korean Math. Soc. 51, 287–301 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Lee, G.M., Lee, J.H.: On nonsmooth optimality theorems for robust multiobjective optimization problems. J. Nonlinear Convex Anal. 16, 2039–2052 (2015)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Suneja, S.K., Khurana, S.: Generalized nonsmooth invexity over cones in vector optimization. Eur. J. Oper. Res. 186, 28–40 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsSouthwest UniversityChongqingChina
  2. 2.Institute of MathematicsHalle-WittenbergHalle (Saale)Germany
  3. 3.Center for General EducationChina Medical UniversityTaichungTaiwan

Personalised recommendations