Advertisement

Journal of Optimization Theory and Applications

, Volume 180, Issue 2, pp 556–573 | Cite as

Numerical Solution of Fractional Optimal Control

  • Wen Li
  • Song WangEmail author
  • Volker Rehbock
Article
  • 84 Downloads

Abstract

This paper presents a numerical algorithm for solving a class of nonlinear optimal control problems subject to a system of fractional differential equations. We first propose a robust second-order numerical integration scheme for the system. The objective is approximated by the trapezoidal rule. We then apply a gradient-based optimization method to the discretized problem. Formulas for calculating the gradients are derived. Computational results demonstrate that our method is able to generate accurate numerical approximations for problems with multiple states and controls. It is also robust with respect to the fractional orders of derivatives.

Keywords

Fractional nonlinear optimal control Numerical solution of fractional ODEs Gradient-based algorithm Gradient formula 

Mathematics Subject Classification

49M15 49J15 65L06 

Notes

Acknowledgements

This work is supported by US Air Force Office of Scientific Research Project FA2386-15-1-4095.

References

  1. 1.
    Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agrawal, O.P.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13, 1269–1281 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bhrawy, A.H., Doha, E.H., Machado, J.A., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control 17, 2389–2402 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dehghan, M., Hamedi, E.A., Khosravian-Arab, H.: A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. J. Vib. Control 22, 1547–1559 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S., Hafez, R.M.: An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Adv. Differ. Equ. 2015, 15 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ezz-Eldien, S.S., Doha, E.H., Baleanu, D., Bhrawy, A.H.: A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J. Vib. Control 23, 16–30 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lotfi, A., Dehghan, M., Yousefi, S.A.: A numerical technique for solving fractional optimal control problems. Comput. Math. Appl. 62, 1055–1067 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Agrawal, O.P.: A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Meas. Control 130, 011010 (2008)CrossRefGoogle Scholar
  10. 10.
    Alizadeh, A., Effati, S.: An iterative approach for solving fractional optimal control problems. J. Vib. Control 24, 18–36 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Alipour, M., Rostamy, D., Baleanu, D.: Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J. Vib. Control 19, 2523–2540 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Singha, N., Nahak, C.: An efficient approximation technique for solving a class of fractional optimal control problems. J. Optim. Theory Appl. 174, 785–802 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lotfi, A., Yousefi, S.A., Dehghan, M.: Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule. J. Comp. Appl. Math. 250, 143–160 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nemati, A., Yousefi, S., Soltanian, F., Ardabili, J.S.: An efficient numerical solution of fractional optimal control problems by using the Ritz method and Bernstein operational matrix. Asian J. Control 18, 2272–2282 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tricaud, C., Chen, Y.Q.: An approximation method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59, 1644–1655 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Yousefi, S.A., Lotfi, A., Dehghan, M.: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problem. J. Vib. Control 17, 2059–2065 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sabeh, Z., Shamsi, M., Dehghan, M.: Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach. Math. Methods Appl. Sci. 39, 3350–3360 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15, 583–597 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mu, P., Wang, L., Liu, C.: A control parameterization method to solve the fractional-order optimal control problem. J. Optim. Theory Appl. (2017).  https://doi.org/10.1007/s10957-017-1163-7
  20. 20.
    Chen, W., Wang, S.: A penalty method for a fractional order parabolic variational inequality governing American put option valuation. Comput. Math. Appl. 67, 77–90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chen, W., Wang, S.: A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing. Appl. Math. Comput. 305, 174–187 (2017)MathSciNetGoogle Scholar
  22. 22.
    Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor corrector approach for the numerical solution of fractional differential equation. Nonlinear Dyn. 29, 2–22 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Diethelm, K., Ford, N.J., Free, A.D., Yu, L.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Method Appl. Mech. Eng. 194, 743–773 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Cao, J., Xu, C.: A high order scheme for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Huang, H., Tang, Y., Vazquez, L.: Convergence analysis of a block-by block method for fractional differential equation. Numer. Math. Theor. Methods Appl. 5, 229–241 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kumar, K., Agrawal, O.P.: An approximate method for numerical solution of fractional differential equations. Signal Process. 86, 2602–2610 (2006)CrossRefzbMATHGoogle Scholar
  28. 28.
    Li, C., Tao, C.: On the fractional Adams method. Comput. Math. Appl. 58, 1573–1588 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Li, W., Wang, S., Rehbock, V.: A 2nd-order one-step numerical integration scheme for a fractional differential equation. Numer. Algebra Control Optim. 7, 273–287 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27, 1333–1360 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Xing, A.Q., Chen, Z.H., Wang, C.L., Yao, Y.Y.: Exact penalty function approach to constrained optimal control problems. Optim. Control Appl. Methods 10, 173–180 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Li, W., Wang, S.: Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. J. Ind. Manag. Optim. 9, 365–389 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Alt, W., Baier, R., Lempio, F., Gerdts, M.: Approximations of linear control problems with bang–bang solutions. Optimization 62, 9–32 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsCurtin UniversityPerthAustralia

Personalised recommendations