Advertisement

Journal of Optimization Theory and Applications

, Volume 180, Issue 2, pp 341–373 | Cite as

Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains

  • Antonio André Novotny
  • Jan SokołowskiEmail author
  • Antoni Żochowski
Invited Paper
  • 80 Downloads

Abstract

Mathematical analysis and numerical solutions of problems with unknown shapes or geometrical domains is a challenging and rich research field in the modern theory of the calculus of variations, partial differential equations, differential geometry as well as in numerical analysis. In this series of three review papers, we describe some aspects of numerical solution for problems with unknown shapes, which use tools of asymptotic analysis with respect to small defects or imperfections to obtain sensitivity of shape functionals. In classical numerical shape optimization, the boundary variation technique is used with a view to applying the gradient or Newton-type algorithms. Shape sensitivity analysis is performed by using the velocity method. In general, the continuous shape gradient and the symmetric part of the shape Hessian are discretized. Such an approach leads to local solutions, which satisfy the necessary optimality conditions in a class of domains defined in fact by the initial guess. A more general framework of shape sensitivity analysis is required when solving topology optimization problems. A possible approach is asymptotic analysis in singularly perturbed geometrical domains. In such a framework, approximations of solutions to boundary value problems (BVPs) in domains with small defects or imperfections are constructed, for instance by the method of matched asymptotic expansions. The approximate solutions are employed to evaluate shape functionals, and as a result topological derivatives of functionals are obtained. In particular, the topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, cavities, inclusions, defects, source terms and cracks. This new concept of variation has applications in many related fields, such as shape and topology optimization, inverse problems, image processing, multiscale material design and mechanical modeling involving damage and fracture evolution phenomena. In the first part of this review, the topological derivative concept is presented in detail within the framework of the domain decomposition technique. Such an approach is constructive, for example, for coupled models in multiphysics as well as for contact problems in elasticity. In the second and third parts, we describe the first- and second-order numerical methods of shape and topology optimization for elliptic BVPs, together with a portfolio of applications and numerical examples in all the above-mentioned areas.

Keywords

Topological derivatives Asymptotic analysis Singular perturbations Domain decomposition 

Mathematics Subject Classification

35C20 35J15 35S05 49J40 49Q12 

Notes

Acknowledgements

This research was partly supported by CNPq (Brazilian Research Council), CAPES (Brazilian Higher Education Staff Training Agency) and FAPERJ (Research Foundation of the State of Rio de Janeiro). These supports are gratefully acknowledged. The authors are indebted to the referee and the editors of JOTA for constructive criticism which allowed them to improve the presentation of this difficult subject.

References

  1. 1.
    Delfour, M.C., Zolésio, J.P.: Shapes and Geometries. Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001)zbMATHGoogle Scholar
  2. 2.
    Plotnikov, P., Sokołowski, J.: Compressible Navier–Stokes Equations. Theory and Shape Optimization. Springer, Basel (2012)zbMATHGoogle Scholar
  3. 3.
    Sokołowski, J., Zolésio, J.P.: Introduction to Shape Optimization—Shape Sensitivity Analysis. Springer, Berlin (1992)zbMATHGoogle Scholar
  4. 4.
    Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 65. Birkhäuser Boston, Inc., Boston, MA (2005)zbMATHGoogle Scholar
  5. 5.
    Henrot, A., Pierre, M.: Variation et optimisation de formes, Mathématiques et applications, vol. 48. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  6. 6.
    Allaire, G.: Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, vol. 146. Springer, New York (2002)zbMATHGoogle Scholar
  7. 7.
    Bendsøe, M.P.: Optimization of Structural Topology, Shape, and Material. Springer, Berlin (1995)zbMATHGoogle Scholar
  8. 8.
    Kogut, P.I., Leugering, G.: Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis. Springer, Berlin (2011)zbMATHGoogle Scholar
  9. 9.
    Bendsøe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin (2003)zbMATHGoogle Scholar
  10. 10.
    Aage, N., Andreassen, E., Lazarov, B.S., Sigmund, O.: Giga-voxel computational morphogenesis for structural design. Nature (2017).  https://doi.org/10.1038/nature23911
  11. 11.
    Nazarov, S.A., Sokołowski, J.: Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82(2), 125–196 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Nazarov, S.A.: Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions. Am. Math. Soc. Transl. 198, 77–125 (1999)MathSciNetGoogle Scholar
  13. 13.
    Nazarov, S.A.: Elasticity polarization tensor, surface enthalpy and Eshelby theorem. Probl. Mat. Anal. 41, 3–35 (2009). (English transl.: J. Math. Sci. 159(1–2), 133–167, (2009))MathSciNetzbMATHGoogle Scholar
  14. 14.
    Nazarov, S.A.: The Eshelby theorem and a problem on an optimal patch. Algebra Anal. 21(5), 155–195 (2009). (English transl.: St. Petersburg Math. 21(5):791–818, (2009))Google Scholar
  15. 15.
    Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49(1–2), 87–108 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Amstutz, S., Novotny, A.A.: Topological asymptotic analysis of the Kirchhoff plate bending problem. ESAIM: Control Optim. Calc. Var. 17(3), 705–721 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Amstutz, S., Novotny, A.A., Van Goethem, N.: Topological sensitivity analysis for elliptic differential operators of order \(2m\). J. Differ. Equ. 256, 1735–1770 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Feijóo, R.A., Novotny, A.A., Taroco, E., Padra, C.: The topological derivative for the Poisson’s problem. Math. Models Methods Appl. Sci. 13(12), 1825–1844 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756–1778 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Khludnev, A.M., Novotny, A.A., Sokołowski, J., Żochowski, A.: Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions. J. Mech. Phys. Solids 57(10), 1718–1732 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lewinski, T., Sokołowski, J.: Energy change due to the appearance of cavities in elastic solids. Int. J. Solids Struct. 40(7), 1765–1803 (2003)zbMATHGoogle Scholar
  22. 22.
    Nazarov, S.A., Sokołowski, J.: Self-adjoint extensions for the Neumann Laplacian and applications. Acta Math. Sin. (Engl. Ser.) 22(3), 879–906 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Novotny, A.A.: Sensitivity of a general class of shape functional to topological changes. Mech. Res. Commun. 51, 1–7 (2013)Google Scholar
  24. 24.
    Novotny, A.A., Sales, V.: Energy change to insertion of inclusions associated with a diffusive/convective steady-state heat conduction problem. Math. Methods Appl. Sci. 39(5), 1233–1240 (2016)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Sales, V., Novotny, A.A., Rivera, J.E.M.: Energy change to insertion of inclusions associated with the Reissner–Mindlin plate bending model. Int. J. Solids Struct. 59, 132–139 (2013)Google Scholar
  26. 26.
    Sokołowski, J., Żochowski, A.: Optimality conditions for simultaneous topology and shape optimization. SIAM J. Control Optim. 42(4), 1198–1221 (2003)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Sokołowski, J., Żochowski, A.: Modelling of topological derivatives for contact problems. Numer. Math. 102(1), 145–179 (2005)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Berlin (2013)zbMATHGoogle Scholar
  29. 29.
    Amstutz, S.: Analysis of a level set method for topology optimization. Optim. Methods Softw. 26(4–5), 555–573 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Hintermüller, M.: Fast level set based algorithms using shape and topological sensitivity. Control Cybern. 34(1), 305–324 (2005)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Hintermüller, M., Laurain, A.: A shape and topology optimization technique for solving a class of linear complementarity problems in function space. Comput. Optim. Appl. 46(3), 535–569 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translations of Mathematical Monographs, vol. 102. American Mathematical Society, Providence, RI (1992). (Translated from the Russian by V. V. Minachin)zbMATHGoogle Scholar
  34. 34.
    Maz’ya, V.G., Nazarov, S.A., Plamenevskij, B.A.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. 1, Operator Theory: Advances and Applications, vol. 111. Birkhäuser Verlag, Basel (2000). (Translated from the German by Georg Heinig and Christian Posthoff)Google Scholar
  35. 35.
    Nazarov, S.A.: Asymptotic Theory of Thin Plates and Rods. Vol. 1: Dimension Reduction and Integral Estimates. Nauchnaya Kniga, Novosibirsk (2001)Google Scholar
  36. 36.
    Nazarov, S.A., Plamenevskij, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1994)Google Scholar
  37. 37.
    Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals for elasticity systems. Mech. Struct. Mach. 29(3), 333–351 (2001)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Argatov, I.I., Sokolowski, J.: Asymptotics of the energy functional of the Signorini problem under a small singular perturbation of the domain. Comput. Math. Math. Phys. 43, 710–724 (2003)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Novotny, A.A., Feijóo, R.A., Padra, C., Taroco, E.: Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 192(7–8), 803–829 (2003)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Samet, B., Amstutz, S., Masmoudi, M.: The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim. 42(5), 1523–1544 (2003)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Guzina, B., Bonnet, M.: Topological derivative for the inverse scattering of elastic waves. Q. J. Mech. Appl. Math. 57(2), 161–179 (2004)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Ammari, H., Garnier, J., Jugnon, V., Kang, H.: Stability and resolution analysis for a topological derivative based imaging functional. SIAM J. Control Optim. 50(1), 48–76 (2012)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2015)zbMATHGoogle Scholar
  45. 45.
    Amigo, R.C.R., Giusti, S., Novotny, A.A., Silva, E.C.N., Sokolowski, J.: Optimum design of flextensional piezoelectric actuators into two spatial dimensions. SIAM J. Control Optim. 52(2), 760–789 (2016)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Giusti, S., Mróz, Z., Sokolowski, J., Novotny, A.: Topology design of thermomechanical actuators. Struct. Multidiscip. Optim. 55, 1575–1587 (2017)MathSciNetGoogle Scholar
  47. 47.
    Nazarov, S., Sokolowski, J., Specovius-Neugebauer, M.: Polarization matrices in anisotropic heterogeneous elasticity. Asymptot. Anal. 68(4), 189–221 (2010)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Delfour, M.: Topological derivative: a semidifferential via the Minkowski content. J. Convex Anal. 25(3), 957–982 (2018)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Cardone, G., Nazarov, S., Sokolowski, J.: Asymptotic analysis, polarization matrices, and topological derivatives for piezoelectric materials with small voids. SIAM J. Control Optim. 48(6), 3925–3961 (2010)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Laurain, A., Nazarov, S., Sokolowski, J.: Singular perturbations of curved boundaries in three dimensions. The spectrum of the Neumann Laplacian. Z. Anal. Anwend. 30(2), 145–180 (2011)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Nazarov, S.A., Sokolowski, J.: Spectral problems in the shape optimisation. Singular boundary perturbations. Asymptot. Anal. 56(3–4), 159–204 (2008)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Nazarov, S., Sokołowski, J.: Selfadjoint extensions for the elasticity system in shape optimization. Bull. Pol. Acad. Sci. Math. 52(3), 237–248 (2004)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Nazarov, S., Sokolowski, J.: Modeling of topology variations in elasticity. In: System Modeling and Optimization, IFIP International Federation for Information Processing, vol. 166, pp. 147–158. Kluwer Academic Publishers, Boston, MA (2005)Google Scholar
  54. 54.
    Nazarov, S., Sokołowski, J.: Self-adjoint extensions of differential operators and exterior topological derivatives in shape optimization. Control Cybern. 34(3), 903–925 (2005)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Nazarov, S., Sokolowski, J.: Shape sensitivity analysis of eigenvalues revisited. Control Cybern. 37(4), 999–1012 (2008)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Argatov, I.I.: Asymptotic models for the topological sensitivity versus the topological derivative. Open Appl. Math. J. 2, 20–25 (2008)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Pavlov, B.S.: The theory of extensions, and explicitly solvable models. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 42(6(258)), 99–131, 247 (1987)Google Scholar
  58. 58.
    Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part II: first order method and applications. J. Optim. Theory Appl. 180(3), 1–30 (2019)MathSciNetGoogle Scholar
  59. 59.
    Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part III: second order method and applications. J. Optim. Theory Appl. 181, 1–22 (2019)Google Scholar
  60. 60.
    Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)Google Scholar
  61. 61.
    Ammari, H., Kang, H., Nakamura, G., Tanuma, K.: Complete asymptotic expansions of solutions of the system of elastostatics in the presence of inhomogeneities of small diameter. J. Elast. 67, 97–129 (2002)zbMATHGoogle Scholar
  62. 62.
    Beretta, E., Bonnetier, E., Francini, E., Mazzucato, A.L.: Small volume asymptotics for anisotropic elastic inclusions. Inverse Probl. Imaging 6(1), 1–23 (2012)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Schneider, M., Andrä, H.: The topological gradient in anisotropic elasticity with an eye towards lightweight design. Math. Methods Appl. Sci. 37, 1624–1641 (2014)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Khludnev, A.M., Sokołowski, J.: Griffith formulae for elasticity systems with unilateral conditions in domains with cracks. Eur. J. Mech. A/Solids 19, 105–119 (2000)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Khludnev, A.M., Sokołowski, J.: On differentation of energy functionals in the crack theory with possible contact between crack faces. J. Appl. Math. Mech. 64(3), 464–475 (2000)Google Scholar
  66. 66.
    Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. WIT Press, Southampton (2000)Google Scholar
  67. 67.
    Khludnev, A.M., Sokołowski, J.: Modelling and Control in Solid Mechanics. Birkhauser, Basel (1997)zbMATHGoogle Scholar
  68. 68.
    Leugering, G., Sokołowski, J., Żochowski, A.: Control of crack propagation by shape-topological optimization. Discrete Contin. Dyn. Syst. Ser. A 35(6), 2625–2657 (2015)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Bouchitté, G., Fragalà, I., Lucardesi, I.: A variational method for second order shape derivatives. SIAM J. Control Optim. 54(2), 1056–1084 (2016).  https://doi.org/10.1137/15100494X MathSciNetzbMATHGoogle Scholar
  70. 70.
    Bouchitté, G., Fragalà, I., Lucardesi, I.: Shape derivatives for minima of integral functionals. Math. Program. 148(1–2, Ser. B), 111–142 (2014).  https://doi.org/10.1007/s10107-013-0712-6 MathSciNetzbMATHGoogle Scholar
  71. 71.
    Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29(4), 615–631 (1977)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)zbMATHGoogle Scholar
  73. 73.
    Sokołowski, J., Zolésio, J.P.: Dérivée par rapport au domaine de la solution d’un problème unilatéral [shape derivative for the solutions of variational inequalities]. C. R. Acad. Sci. Paris Sér. I Math. 301(4), 103–106 (1985)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Frémiot, G., Horn, W., Laurain, A., Rao, M., Sokołowski, J.: On the analysis of boundary value problems in nonsmooth domains. Dissertationes Mathematicae (Rozprawy Matematyczne) vol. 462, p. 149 (2009)Google Scholar
  75. 75.
    Ammari, H., Khelifi, A.: Electromagnetic scattering by small dielectric inhomogeneities. J. Math. Pures Appl. 82, 749–842 (2003)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Bellis, C., Bonnet, M., Cakoni, F.: Acoustic inverse scattering using topological derivative of far-field measurements-based \(L^2\) cost functionals. Inverse Probl. 29, 075012 (2013)zbMATHGoogle Scholar
  77. 77.
    Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. ESAIM Math. Model. Numer. Anal. 37, 723–748 (2000)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Kurasov, P., Posilicano, A.: Finite speed of propagation and local boundary conditions for wave equations with point interactions. Proc. Am. Math. Soc. 133(10), 3071–3078 (2005).  https://doi.org/10.1090/S0002-9939-05-08063-9 MathSciNetzbMATHGoogle Scholar
  79. 79.
    Amstutz, S., Bonnafé, A.: Topological derivatives for a class of quasilinear elliptic equations. J. Math. Pures Appl. 107, 367–408 (2017)MathSciNetGoogle Scholar
  80. 80.
    Larnier, S., Masmoudi, M.: The extended adjoint method. ESAIM Math. Model. Numer. Anal. 47, 83–108 (2013)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Buscaglia, G.C., Ciuperca, I., Jai, M.: Topological asymptotic expansions for the generalized poisson problem with small inclusions and applications in lubrication. Inverse Probl. 23(2), 695–711 (2007)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Céa, J., Garreau, S., Guillaume, P., Masmoudi, M.: The shape and topological optimizations connection. Comput. Methods Appl. Mech. Eng. 188(4), 713–726 (2000)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório Nacional de Computação Científica LNCC/MCTCoordenação de Matemática Aplicada e ComputacionalPetrópolisBrazil
  2. 2.UMR 7502 Laboratoire de Mathématiques, Institut Élie CartanUniversité de LorraineVandoeuvre Lès Nancy CedexFrance
  3. 3.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations