Advertisement

Fixed Point Theorems for Classes of Nonlinear Mappings of Contractive Type

  • Simeon Reich
  • Alexander J. Zaslavski
Article
  • 81 Downloads

Abstract

For certain classes of contractive mappings in complete metric spaces, we establish the existence of a fixed point which attracts all inexact orbits.

Keywords

Complete metric space Fixed point Iterate 

Mathematics Subject Classification

47H09 47H10 54E50 54E52 

Notes

Acknowledgements

The first author was partially supported by the Israel Science Foundation (Grant 820/17), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund.

References

  1. 1.
    Picard, E.: Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives. J. Math. Pures Appl. 6, 145–210 (1890)zbMATHGoogle Scholar
  2. 2.
    Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922)CrossRefzbMATHGoogle Scholar
  3. 3.
    Caccioppoli, R.: Un teorema generale sull’esistenza di elementi uniti in una trasformazione funzionale. Atti Accad. Naz. Lincei 11, 794–799 (1930)zbMATHGoogle Scholar
  4. 4.
    Rakotch, E.: A note on contractive mappings. Proc. Am. Math. Soc. 13, 459–465 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Browder, F.E.: On the convergence of successive approximations for nonlinear functional equations. Indag. Math. 30, 27–35 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)zbMATHGoogle Scholar
  9. 9.
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Reich, S., Zaslavski, A.J.: Genericity in Nonlinear Analysis. Developments in Mathematics. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Browder, F.E.: Remarks on fixed point theorems of contractive type. Nonlinear Anal. 3, 657–661 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Browder, F.E.: Erratum to the paper remarks on fixed point theorems of contractive type. Nonlinear Anal. 5, 111 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Walter, W.: Remarks on a paper by F. Browder about contraction. Nonlinear Anal. 5, 21–25 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kirk, W.A.: Contraction mappings and extensions. In: Kirk, W.A., Sims, B. (eds.) Handbook of Metric Fixed Point Theory, pp. 1–34. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations