Advertisement

Journal of Optimization Theory and Applications

, Volume 180, Issue 2, pp 442–450 | Cite as

Discrete Multivariate Optimal Control

  • Andreea BejenaruEmail author
  • Monica Pîrvan
Article
  • 52 Downloads

Abstract

This paper reconsiders some aspects of the discrete optimal control theory by extending the dimension of the discrete-time variable. A new strong, symbiotic dynamics is defined and analyzed through its compatibility aspects. The main outcomes reflect the complete controllability of the multivariate discrete evolution (multidimensional iterative process) and the necessary conditions for optimizing a performance criterion of linear quadratic form. An example is provided to emphasize the relevancy and the extensive features of such an approach.

Keywords

Optimal control Multidirectional iterative process Dynamic matrix Maximum principle Riccati multidimensional iterative process 

Notes

Acknowledgements

This work has been funded by University Politehnica of Bucharest, through the Excellence Research Grants Program, UPB-GEX 2017. Identifier: UPB-GEX 2017, Ctr. No. 84/25.09.2017.

References

  1. 1.
    Evans, L.C.: An Introduction to Mathematical Optimal Control Theory. Lecture Notes, University of California, Department of Mathematics, Berkeley (2010)Google Scholar
  2. 2.
    Guermah, S., Djennoune, S., Bettayeb, M.: Controllability and observability of linear discrete-time fractional-order systems. Int. J. Appl. Math. Comput. Sci. 18(2), 213–222 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)zbMATHGoogle Scholar
  4. 4.
    Prepelita, V., Vasilache, T., Doroftei, M.: Control Theory. U.P, Bucharest, Bucharest (1997)Google Scholar
  5. 5.
    Pontriaguine, L., Boltianski, V., Gamkrelidze, R., Michtchenko, E.: Théorie Mathématique des Processus Optimaux. MIR, Moscow (1974)zbMATHGoogle Scholar
  6. 6.
    Udrişte, C.: Multitime controllability, observability and bang-bang principle. J. Optim. Theory Appl. 139(1), 141–157 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Udrişte, C.: Simplified multitime maximum principle. Balkan J. Geom. Appl. 14(1), 102–119 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Udrişte, C., Bejenaru, A.: Multitime optimal control with area integral costs on boundary. Balkan J. Geom. Appl. 16(2), 138–154 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bejenaru A., Udriste C.: Riemannian Optimal Control. arXiv:1203.3655 [math.OC] (2012)
  10. 10.
    Ghiu C., Tuliga R., Udriste C.: Discrete Multitime Multiple Recurrence. arXiv:1506.02508 [math.DS] (2015)
  11. 11.
    Ghiu C., Tuliga R., Udriste C., Tevy I.: Discrete Diagonal Recurrences and Discrete Minimal Submanifolds. arXiv:1506.04656 [math.DS] (2015)
  12. 12.
    Roesser, R.P.: A discrete state-space model for linear image processing. IEEE Trans. Autom. Control 20(1), 1–10 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Applied SciencesUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations