Advertisement

On Unique Solutions of Multiple-State Optimal Design Problems on an Annulus

  • Krešimir Burazin
Article

Abstract

We study the uniqueness and explicit derivation of the relaxed optimal solutions, corresponding to the minimization of weighted sum of potential energies for a mixture of two isotropic conductive materials on an annulus. Recently, it has been shown by Burazin and Vrdoljak that even for multiple-state problems, if the domain is spherically symmetric, then the proper relaxation of the problem by the homogenization method is equivalent to a simpler relaxed problem, stated only in terms of local proportions of given materials. This enabled explicit calculation of a solution on a ball, while problems on an annulus appeared to be more tedious. In this paper, we discuss the uniqueness of a solution of this simpler relaxed problem, when the domain is an annulus and we use the necessary and sufficient conditions of optimality to present a method for explicit calculation of the unique solution of this simpler proper relaxation, which is demonstrated on an example.

Keywords

Stationary diffusion Optimal design Homogenization Optimality conditions 

Mathematics Subject Classification

80A20 49J20 80M40 49K35 

Notes

Acknowledgements

This work was supported in part by Croatian Science Foundation under the Project 9780 WeConMApp.

References

  1. 1.
    Casado-Diaz, J.: Smoothness properties for the optimal mixture of two isotropic materials: the compliance and eigenvalue problems. SIAM J. Control Optim. 53, 2319–2349 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Murat F., Tartar L.: Calcul des Variations et Homogénéisation. In: Les Méthodes de l’Homogenisation Théorie et Applications en Physique (Bréau-sans-Nappe, 1983), Collect. Dir. tudes Rech. lec. France, vol. 57, pp. 319–369. Eyrolles, Paris (1985)Google Scholar
  4. 4.
    Tartar L., An introduction to the homogenization method in optimal design. In: Cellina A., Ornelas A. (eds.): Optimal Shape Design (Troia, 1998), Lecture Notes in Math. vol. 1740, pp. 47–156. Springer, New York (2000)Google Scholar
  5. 5.
    Tartar L.: Remarks on homogenization method in optimal design problems. In: Homogenization and applications to material sciences (Nice, 1995), GAKUTO Internat. Ser. Math. Sci. Appl., vol. 9, pp. 393–412. Gakkokotosho, Tokyo (1995)Google Scholar
  6. 6.
    Lurie, K.A., Cherkaev, A.V.: Exact estimates of conductivity of composites formed by two isotropically conducting media, taken in prescribed proportion. Proc. R. Soc. Edinb. 99A, 71–87 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tartar L.: Estimations fines des coefficients homogénéisés. In: Krée P. (ed.): Ennio DeGiorgi colloquium, Res. Notes Math. vol. 125, pp. 168–187. Pitman, London (1985)Google Scholar
  8. 8.
    Tartar L.: The appearance of oscillations in optimization problems. In: Non-Classical Continuum Mechanics (Durham, 1986), London Math. Soc. Lecture Note Ser., vol. 122, pp. 129–150. Cambridge University Press, Cambridge (1987)Google Scholar
  9. 9.
    Goodman, J., Kohn, R.V., Reyna, L.: Numerical study of a relaxed variational problem from optimal design. Comput. Meth. Appl. Math. Eng. 57, 107–127 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Casado-Diaz, J.: Some smoothness results for the optimal design of a two-composite material which minimizes the energy. Calc. Var. Partial Differ, Equ. 53, 649–673 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Antonić N., Vrdoljak M.: Sequential laminates in multiple state optimal design problems. Math. Probl. Eng. 2006, Article ID 68695, 14 p (2006)Google Scholar
  12. 12.
    Antonić, N., Vrdoljak, M.: Gradient methods for multiple state optimal design problems. Ann. Univ. Ferrara Sez. VII. Sci. Mat. 53, 177–187 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Vrdoljak, M.: On Hashin–Shtrikman bounds for mixtures of two isotropic materials. Nonlinear Anal. Real World Appl. 11, 4597–4606 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Vrdoljak, M.: Classical optimal design in two-phase conductivity problems. SIAM J. Control Optim. 54(4), 2020–2035 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OsijekOsijekCroatia

Personalised recommendations