Epi-convergence: The Moreau Envelope and Generalized Linear-Quadratic Functions

  • Chayne Planiden
  • Xianfu WangEmail author


This work explores the class of generalized linear-quadratic functions, constructed using maximally monotone symmetric linear relations. Calculus rules and properties of the Moreau envelope for this class of functions are developed. In finite dimensions, on a metric space defined by Moreau envelopes, we consider the epigraphical limit of a sequence of quadratic functions and categorize the results. We examine the question of when a quadratic function is a Moreau envelope of a generalized linear-quadratic function; characterizations involving nonexpansiveness and Lipschitz continuity are established. This work generalizes some results by Hiriart-Urruty and by Rockafellar and Wets.


Attouch–Wets metric Complete metric space Epi-convergence Extended seminorm Fenchel conjugate Firmly nonexpansive Generalized linear-quadratic function Linear relation Lipschitz continuous Maximally monotone Nonexpansive Moreau envelope Proximal mapping 

Mathematics Subject Classification

47A06 52A41 47H05 90C31 



The authors would like to thank the editor and the anonymous referee for their very helpful comments and suggestions for improvement of this manuscript. Chayne Planiden was supported by UBC University Graduate Fellowship and by Natural Sciences and Engineering Research Council of Canada. Xianfu Wang was partially supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.


  1. 1.
    Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)CrossRefzbMATHGoogle Scholar
  2. 2.
    Poliquin, R., Rockafellar, R.: Generalized Hessian properties of regularized nonsmooth functions. SIAM J. Optim. 6(4), 1121–1137 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Attouch, H., Wets, R.: Quantitative stability of variational systems: I. The epigraphical distance. Trans. Am. Math. Soc. 328, 695–729 (1991)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Attouch, H.: Variational Convergence for Functions and Operators. Applicable Mathematics Series. Pitman, Boston (1984)zbMATHGoogle Scholar
  5. 5.
    Cross, R.: Multivalued Linear Operators. Monographs and Textbooks in Pure and Applied Mathematics, vol. 213. Marcel Dekker Inc, New York (1998)zbMATHGoogle Scholar
  6. 6.
    Bartz, S., Bauschke, H., Moffat, S., Wang, X.: The resolvent average of monotone operators: dominant and recessive properties. SIAM J. Optim. 26(1), 602–634 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bauschke, H., Wang, X., Yao, L.: Monotone linear relations: maximality and Fitzpatrick functions. J. Convex Anal. 16(3–4), 673–686 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bauschke, H., Wang, X., Yao, L.: On Borwein–Wiersma decompositions of monotone linear relations. SIAM J. Optim. 20(5), 2636–2652 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yao, L.: On Monotone Linear Relations and the Sum Problem in Banach Spaces. UBC Ph. D. thesis (2011)Google Scholar
  10. 10.
    Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau–Yosida regularization: theoretical preliminaries. SIAM J. Optim. 7(2), 367–385 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rockafellar, R.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997)zbMATHGoogle Scholar
  12. 12.
    Hiriart-Urruty, J.B.: The deconvolution operation in convex analysis: an introduction. Cybern. Syst. Anal. 30(4), 555–560 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rockafellar, R., Wets, R.: Variational Analysis. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Borwein, J., Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Attouch, H., Beer, G.: On the convergence of subdifferentials of convex functions. Arch. Math. (Basel) 60(4), 389–400 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Burke, J., Hoheisel, T.: Epi-convergent smoothing with applications to convex composite functions. SIAM J. Optim. 23(3), 1457–1479 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rockafellar, R., Royset, J.: Random variables, monotone relations, and convex analysis. Math. Program. 148(1–2, Ser. B), 297–331 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wijsman, R.A.: Convergence of sequences of convex sets, cones and functions. II. Trans. Am. Math. Soc. 123, 32–45 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Beer, G.: Topologies on Closed and Closed Convex Sets. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Planiden, C., Wang, X.: Strongly convex functions, Moreau envelopes and the generic nature of convex functions with strong minimzers. SIAM J. Optim. 26(2), 1341–1364 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bartz, S., Bauschke, H., Borwein, J., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative. Nonlinear Anal. 66(5), 1198–1223 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Baillon, J.B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et \(n\)-cycliquement monotones. Isr. J. Math. 26(2), 137–150 (1977)CrossRefzbMATHGoogle Scholar
  24. 24.
    Bauschke, H., Borwein, J., Wang, X., Yao, L.: The Brezis–Browder theorem in a general Banach space. J. Funct. Anal. 262(12), 4948–4971 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods, vol. 306. Springer, Berlin (2013)zbMATHGoogle Scholar
  26. 26.
    Meyer, C.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)CrossRefGoogle Scholar
  27. 27.
    Mordukhovich, B.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer, Berlin (2006)Google Scholar
  28. 28.
    Roman, S.: Advanced Linear Algebra, vol. 3. Springer, Berlin (2005)zbMATHGoogle Scholar
  29. 29.
    Beer, G.: Norms with infinite values. J. Convex Anal. 22(1), 35–58 (2015)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Beer, G., Vanderwerff, J.: Structural properties of extended normed spaces. Set-Valued Var. Anal. 23(4), 613–630 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics & Applied StatisticsUniversity of WollongongWollongongAustralia
  2. 2.Department of MathematicsUniversity of British Columbia OkanaganKelownaCanada

Personalised recommendations