Slopes, Error Bounds and Weak Sharp Pareto Minima of a Vector-Valued Map

  • Xuan Duc Ha TruongEmail author


In this paper, we provide a detailed study of the upper and lower slopes of a vector-valued map recently introduced by Bednarczuk and Kruger. We show that these slopes enjoy most properties of the strong slope of a scalar-valued function and can be explicitly computed or estimated in the convex, strictly differentiable, linear cases. As applications, we obtain error bounds for lower level sets (in particular, a Hoffman-type error bound for a system of linear inequalities in the infinite-dimensional space setting, existence of weak sharp Pareto minima) and sufficient conditions for Pareto minima.


Vector-valued map Slope Error bound Weak sharp Pareto minima 

Mathematics Subject Classification

49J53 58C06 90C29 



The research was carried out during the author’s stays at the Vietnam Institute for Advanced Study in Mathematics and the Institute of Mathematics, University of Erlangen-Nuremberg, under the Georg Forster grant of the Alexander von Humboldt Foundation, and was partially supported by NAFOSTED, Grant 101.01-2017.20. The author thanks the editor and the referees for the helpful comments and suggestions, which allowed to improve the paper.


  1. 1.
    Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lojasiewicz, S.: Sur le problème de la division. Stud. Math. 18, 87–136 (1959)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ferris, M. C.: Weak Sharp Minima and Penalty Functions in Mathematical Programming. PhD thesis, University of Cambridge, Cambridge (1988)Google Scholar
  4. 4.
    Polyak, B. T.: Sharp Minima. Institute of Control Sciences Lecture Notes, Moscow, USSR, 1979. Presented at the IIASA workshop on generalized Lagrangians and their applications, IIASA, Laxenburg, Austria (1979)Google Scholar
  5. 5.
    Azé, D.: A survey on error bounds for lower semicontinuous functions. In: Proceedings of 2003 MODE-SMAI Conference of ESAIM Proceedings, EDP Sci., Les Ulis, vol. 13, pp. 1–17 (2003)Google Scholar
  6. 6.
    Lewis, A. S., Pang, J.-S.: Error bounds for convex inequality systems. Generalized Convexity, Generalized Monotonicity: Recent Results (Luminy, 1996), 75–110. In: Nonconvex Optimization and Its Applications, vol. 27. Kluwer Acad. Publ., Dordrecht (1998)Google Scholar
  7. 7.
    Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bednarczuk, E.M., Kruger, A.Y.: Error bounds for vector-valued functions: necessary and sufficient conditions. Nonlinear Anal. 75, 1124–1140 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bednarczuk, E.M., Kruger, A.Y.: Error bounds for vector-valued functions on metric spaces. Vietnam J. Math. 40(2–3), 165–180 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Burke, J.V., Deng, S.: Weak sharp minima revisited. Part I: basic theory. Control Cybern. 31, 439–469 (2002)zbMATHGoogle Scholar
  11. 11.
    Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Studniarski, M., Ward, D.E.: Weak sharp minima: characterizations and sufficient conditions. SIAM J. Control Optim. 38, 219–238 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bednarczuk, E. M.: Stability analysis for parametric vector optimization problems. Dissertationes Mathematicae, 42, Warsaw (2007)Google Scholar
  14. 14.
    Bednarczuk, E.M.: On weak sharp minima in vector optimization with applications to parametric problems. Control Cybern. 36, 563–570 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Liu, C.G., Ng, K.F., Yang, W.H.: Merit functions in vector optimization. Math. Program. Ser. A 119, 215–237 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ng, K.F., Zheng, X.Y.: Global weak sharp minima on Banach spaces. SIAM J. Control Optim. 41(6), 1868–1885 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Studniarski, M.: Weak sharp minima in multiobjective optimization. Control Cybern. 36, 925–937 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    De Giorgi, E., Marino, A., Tosques, M.: Problemi di evoluzione in spazi metrici e curve di massima pendenza (Evolution problems in metric spaces and curves of maximal slope). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68, 180–187 (1980)Google Scholar
  19. 19.
    Azé, D., Corvellec, J.-N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hiriart-Urruty, J.B.: New concepts in nondifferentiable programming. Bull. Soc. Math. France 60, 57–85 (1979)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42(3), 1071–1086 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Coulibaly, A., Crouzeix, J.-P.: Condition numbers and error bounds in convex programming. Math. Program. Ser. B 116, 79–113 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jahn, J.: Vector Optimization—Theory, Applications, and Extensions, 2nd edn. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)zbMATHGoogle Scholar
  25. 25.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 330. Springer, Berlin (2006)Google Scholar
  26. 26.
    Zheng, X.Y., Ng, K.F.: Hoffman least error bounds for systems of linear inequalities. J. Glob. Optim. 30, 391–403 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations