Skip to main content
Log in

Optimal Control of the Fokker–Planck Equation with Space-Dependent Controls

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is devoted to the analysis of a bilinear optimal control problem subject to the Fokker–Planck equation. The control function depends on time and space and acts as a coefficient of the advection term. For this reason, suitable integrability properties of the control function are required to ensure well posedness of the state equation. Under these low regularity assumptions and for a general class of objective functionals, we prove the existence of optimal controls. Moreover, for common quadratic cost functionals of tracking and terminal type, we derive the system of first-order necessary optimality conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The probability flux describes the flow of probability in terms of probability per unit time per unit area.

References

  1. Kolmogoroff, A.: Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104(1), 415–458 (1931). doi:10.1007/BF01457949

    Article  MathSciNet  MATH  Google Scholar 

  2. Gardiner, C.: Stochastic Methods. A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, 4th edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Horsthemke, W., Lefever, R.: Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Springer Series in Synergetics, vol. 15. Springer, Berlin (1984)

    MATH  Google Scholar 

  4. Le Bris, C., Lions, P.L.: Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients. Commun. Partial Differ. Equ. 33(7–9), 1272–1317 (2008). doi:10.1080/03605300801970952

    Article  MathSciNet  MATH  Google Scholar 

  5. Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254(1), 109–153 (2008). doi:10.1016/j.jfa.2007.09.020

    Article  MathSciNet  MATH  Google Scholar 

  6. Porretta, A.: Weak solutions to Fokker–Planck equations and mean field games. Arch. Ration. Mech. Anal. 216(1), 1–62 (2015). doi:10.1007/s00205-014-0799-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Brockett, R.: New issues in the mathematics of control. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited—2001 and Beyond, pp. 189–219. Springer, Berlin (2001)

  8. Forbes, M.G., Forbes, J.F., Guay, M.: Regulating discrete-time stochastic systems: focusing on the probability density function. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 11(1–2), 81–100 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Jumarie, G.: Tracking control of nonlinear stochastic systems by using path cross-entropy and Fokker–Planck equation. Int. J. Syst. Sci. 23(7), 1101–1114 (1992). doi:10.1080/00207729208949368

    Article  MathSciNet  MATH  Google Scholar 

  10. Kárný, M.: Towards fully probabilistic control design. Autom. J. IFAC 32(12), 1719–1722 (1996). doi:10.1016/S0005-1098(96)80009-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, H.: Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability. IEEE Trans. Autom. Control 44(11), 2103–2107 (1999). doi:10.1109/9.802925

    Article  MathSciNet  MATH  Google Scholar 

  12. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Applications of Mathematics, No. 1. Springer, Berlin, New York (1975)

    Book  MATH  Google Scholar 

  13. Annunziato, M., Borzì, A.: Optimal control of probability density functions of stochastic processes. Math. Model. Anal. 15(4), 393–407 (2010). doi:10.3846/1392-6292.2010.15.393-407

    Article  MathSciNet  MATH  Google Scholar 

  14. Annunziato, M., Borzì, A.: A Fokker–Planck control framework for multidimensional stochastic processes. J. Comput. Appl. Math. 237(1), 487–507 (2013). doi:10.1016/j.cam.2012.06.019

    Article  MathSciNet  MATH  Google Scholar 

  15. Blaquière, A.: Controllability of a Fokker–Planck equation, the Schrödinger system, and a related stochastic optimal control (revised version). Dyn. Control 2(3), 235–253 (1992). doi:10.1007/BF02169515

    Article  MATH  Google Scholar 

  16. Porretta, A.: On the planning problem for the mean field games system. Dyn. Games Appl. 4(2), 231–256 (2014). doi:10.1007/s13235-013-0080-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Addou, A., Benbrik, A.: Existence and uniqueness of optimal control for a distributed-parameter bilinear system. J. Dyn. Control Syst. 8(2), 141–152 (2002). doi:10.1023/A:1015372725255

    Article  MathSciNet  MATH  Google Scholar 

  18. Fleig, A., Grüne, L., Guglielmi, R.: Some results on model predictive control for the Fokker–Planck equation. In: MTNS 2014: 21st International Symposium on Mathematical Theory of Networks and Systems, July 7–11, 2014, pp. 1203–1206. University of Groningen, The Netherlands (2014)

  19. Aronson, D.G.: Non-negative solutions of linear parabolic equations. Ann. Sc. Norm. Super. Pisa 3(22), 607–694 (1968)

    MathSciNet  MATH  Google Scholar 

  20. Aronson, D.G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35(4), 1297–1327 (1997). doi:10.1137/S0363012995283637

    Article  MathSciNet  MATH  Google Scholar 

  22. Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39(2), 143–177 (1999). doi:10.1007/s002459900102

    Article  MathSciNet  MATH  Google Scholar 

  23. Primak, S., Kontorovich, V., Lyandres, V.: Stochastic methods and their applications to communications. Wiley, Hoboken (2004). doi:10.1002/0470021187

    Book  MATH  Google Scholar 

  24. Protter, P.E.: Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability, vol. 21. Springer, Berlin (2005). doi:10.1007/978-3-662-10061-5

    Google Scholar 

  25. Risken, H.: The Fokker–Planck Equation. Springer Series in Synergetics, vol. 18, 2nd edn. Springer, Berlin (1989). doi:10.1007/978-3-642-61544-3

    MATH  Google Scholar 

  26. Feller, W.: Diffusion processes in one dimension. Trans. Am. Math. Soc. 77, 1–31 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gīhman, Ĭ.Ī., Skorohod, A.V.: Stochastic Differential Equations. Springer, New York, Heidelberg (1972). Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72

  28. Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010). doi:10.1090/gsm/112

    Google Scholar 

  29. Aubin, J.P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  30. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  31. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987). doi:10.1007/BF01762360

    Article  MathSciNet  MATH  Google Scholar 

  32. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987). doi:10.1017/CBO9781139171755

    Book  MATH  Google Scholar 

  33. Ladyzhenskaya, O., Solonnikov, V., Ural’tseva, N.: Linear and Quasilinear Equations of Parabolic Type. Izdat. ’Nauka’, Moskva (1967)

    MATH  Google Scholar 

  34. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer, New York, Berlin (1971)

Download references

Acknowledgements

The authors wish to express their gratitude to Lars Grüne for suggesting them this very interesting subject and for many helpful comments. They would also like to thank Alfio Borzì for very helpful discussions and the referees for their valuable comments that helped to improve the manuscript. This work was partially supported by the EU under the 7th Framework Program, Marie Curie Initial Training Network FP7-PEOPLE-2010-ITN SADCO, GA 264735-SADCO, by the DFG Project Model Predictive Control for the Fokker–Planck equation, GR 1569/15-1, and by the INdAM through the GNAMPA Research Project 2015 “Analisi e controllo di equazioni a derivate parziali nonlineari.” Most of the results proved in this paper have been announced in a less general setting in a proceedings of the 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Fleig.

Additional information

Communicated by Roland Herzog.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleig, A., Guglielmi, R. Optimal Control of the Fokker–Planck Equation with Space-Dependent Controls. J Optim Theory Appl 174, 408–427 (2017). https://doi.org/10.1007/s10957-017-1120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1120-5

Keywords

Mathematics Subject Classification

Navigation