Advertisement

On the Minimum-Time Control Problem for Differential Drive Robots with Bearing Constraints

  • Andrea CristofaroEmail author
  • Paolo Salaris
  • Lucia Pallottino
  • Fabio Giannoni
  • Antonio Bicchi
Article

Abstract

This paper presents a study of analysis of minimum-time trajectories for a differential drive robot equipped with a fixed and limited field-of-view camera, which must keep a given landmark in view during maneuvers. Previous works have considered the same physical problem and provided a complete analysis/synthesis for the problem of determining the shortest paths. The main difference in the two cost functions (length vs. time) lays on the rotation on the spot. Indeed, this maneuver has zero cost in terms of length and hence leads to a 2D shortest path synthesis. On the other hand, in case of minimum time, the synthesis depends also on the orientations of the vehicle. In other words, the not zero cost of the rotation on the spot maneuvers leads to a 3D minimum-time synthesis. Moreover, the shortest paths have been obtained by exploiting the geometric properties of the extremal arcs, i.e., straight lines, rotations on the spot, logarithmic spirals and involute of circles. Conversely, in terms of time, even if the extremal arcs of the minimum-time control problem are exactly the same, the geometric properties of these arcs change, leading to a completely different analysis and characterization of optimal paths. In this paper, after proving the existence of optimal trajectories and showing the extremal arcs of the problem at hand, we provide the control laws that steer the vehicle along these arcs and the time-cost along each of them. Moreover, this being a crucial step toward numerical implementation, optimal trajectories are proved to be characterized by a finite number of switching points between different extremal arcs, i.e., the concatenations of extremal arcs with infinitely many junction times are shown to violate the optimality conditions.

Keywords

Time-optimal paths Nonholonomic dynamical systems Bearing constraints Differential drive vehicles 

Mathematics Subject Classification

34H05 37J60 49J15 93C85 

References

  1. 1.
    Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to autonomous mobile robots. MIT press, Cambridge (2011)Google Scholar
  2. 2.
    Cortés, J., Martínez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans. Autom. Control 51(8), 1289–1298 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ghrist, R., Lavalle, S.M.: Nonpositive curvature and Pareto optimal coordination of robots. SIAM J. Control Optim. 45(5), 1697–1713 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ghrist, R.W., Koditschek, D.E.: Safe cooperative robot dynamics on graphs. SIAM J. Control Optim. 40(5), 1556–1575 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Guibas, L.J., Motwani, R., Raghavan, P.: The robot localization problem. SIAM J. Comput. 26(4), 1120–1138 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zhou, X.S., Roumeliotis, S.I.: Robot-to-robot relative pose estimation from range measurements. IEEE Trans. Robot. 24(6), 1379–1393 (2008)CrossRefGoogle Scholar
  7. 7.
    Cristofaro, A., Martinelli, A.: Optimal trajectories for multi robot localization. In: 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 6358–6364. IEEE (2010)Google Scholar
  8. 8.
    Dudek, G., Romanik, K., Whitesides, S.: Localizing a robot with minimum travel. SIAM J. Comput. 27(2), 583–604 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ecker, J.G., Kupferschmid, M., Marin, S.P.: Performance of several optimization methods on robot trajectory planning problems. SIAM J. Sci. Comput. 15(6), 1401–1412 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145, 367–393 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Souères, P., Boissonnat, J.D.: Optimal Trajectories for Nonholonomic Mobile Robots, vol. 229. Lecture note in control and information scienze, Souères, H., Laumond, J. P. (1998)Google Scholar
  12. 12.
    Balkcom, D., Mason, M.: Time optimal trajectories for bounded velocity differential drive vehicles. Int. J. Robot. Res. 21(3), 199–217 (2002)CrossRefGoogle Scholar
  13. 13.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  14. 14.
    Gans, N., Hutchinson, S.: A stable vision-based control scheme for nonholonomic vehicles to keep a landmark in the field of view. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2196 –2201 (2007)Google Scholar
  15. 15.
    Gans, N., Hutchinson, S.: Stable visual servoing through hybrid switched system control. IEEE Trans. Robot. 23(3), 530–540 (2007)CrossRefGoogle Scholar
  16. 16.
    Murrieri, P., Fontanelli, D., Bicchi, A.: A hybrid-control approach to the parking problem of a wheeled vehicle using limited view-angle visual feedback. Int. J. Robot. Res. 23(4–5), 437–448 (2004)CrossRefGoogle Scholar
  17. 17.
    Salaris, P., Fontanelli, D., Pallottino, L., Bicchi, A.: Shortest paths for a robot with nonholonomic and field-of-view constraints. IEEE Trans. Robot. 26(2), 269–281 (2010)CrossRefGoogle Scholar
  18. 18.
    Salaris, P., Pallottino, L., Bicchi, A.: Shortest paths for finned, winged, legged, and wheeled vehicles with side-looking sensors. Int. J. Robot. Res. 31(8), 997–1017 (2012)CrossRefGoogle Scholar
  19. 19.
    Salaris, P., Cristofaro, A., Pallottino, L., Bicchi, A.: Shortest paths for wheeled robots with limited field-of-view: introducing the vertical constraint. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 5143 –5149 (2013)Google Scholar
  20. 20.
    Salaris, P., Cristofaro, A., Pallottino, L., Bicchi, A.: Epsilon–optimal synthesis for vehicles with vertically bounded field-of-view. IEEE Trans. Autom. Control (in press)Google Scholar
  21. 21.
    Chitsaz, H., LaValle, S.M., Balkcom, D.J., Mason, M.: Minimum wheel-rotation for differential-drive mobile robots. Int. J. Robot. Res. 28(1), 66–80 (2009)CrossRefGoogle Scholar
  22. 22.
    Balkcom, D., Mason, M.: Time-optimal trajectories for an omnidirectional vehicle. Int. J. Robot. Res. 25(10), 985–999 (2006)CrossRefGoogle Scholar
  23. 23.
    Souères, H., Laumond, J.P.: Shortest paths synthesis for a car-like robot. IEEE Trans. Autom. Control 41(5), 672–688 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sussmann, H., Tang, G.: Shortest paths for the Reeds–Shepp car: A worked out example of the use of geometric techniques in nonlinear optimal control. Technical report, Department of Mathematics, Rutgers University (1991)Google Scholar
  25. 25.
    Huifang, W., Yangzhou, C., Soueres, P.: A geometric algorithm to compute time-optimal trajectories for a bidirectional steered robot. IEEE Trans. Robot. 25(2), 399–413 (2009)CrossRefGoogle Scholar
  26. 26.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 457–516 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cristofaro, A., Salaris, P., Pallottino, L., Giannoni, F., Bicchi, A.: On time-optimal trajectories for differential drive vehicles with field-of-view constraints. In: Proceedings of the 53rd IEEE Conference on Decision and Control (2014, in press)Google Scholar
  28. 28.
    Lou, H.: Existence and nonexistence results of an optimal control problem by using relaxed control. SIAM J. Control Optim. 46(6), 1923–1941 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pedregal, P., Tiago, J.: Existence results for optimal control problems with some special nonlinear dependence on state and control. SIAM J. Control Optim. 48(2), 415–437 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shiller, Z., Lu, H.: Computation of path constrained time optimal motions with dynamic singularities. J. Dyn. Syst. Meas. Control 114(1), 34–40 (1992)CrossRefzbMATHGoogle Scholar
  31. 31.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, ISBN: 0521540518 (2004)Google Scholar
  32. 32.
    Salaris, P., Cristofaro, A., Pallottino, L.: Epsilon-optimal synthesis for nonholonomic vehicles with limited field-of-view sensors. IEEE Trans. Robot. 31(6), 1404–1418 (2015)CrossRefzbMATHGoogle Scholar
  33. 33.
    Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)zbMATHGoogle Scholar
  35. 35.
    Berkovitz, L.D., Medhin, N.G.: Nonlinear Optimal Control Theory. CRC press, Boca Raton (2012)zbMATHGoogle Scholar
  36. 36.
    Bryson, A.E., Denham, W.F., Dreyfus, S.E.: Optimal programming problems with inequality constraints. AIAA J. 1(11), 2544–2550 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Bryson, A., Ho, Y.: Applied Optimal Control. Wiley, New York (1975)Google Scholar
  38. 38.
    Maurer, H.: On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Opt. 15(3), 345–362 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Bonnard, B., Faubourg, L., Launay, G., Trélat, E.: Optimal control with state constraints and the space shuttle re-entry problem. J. Dyn. Control Syst. 9(2), 155–199 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control, vol. 264. Springer, Berlin (2013)zbMATHGoogle Scholar
  41. 41.
    Johansen, T.A., Perez, T.: Unmanned aerial surveillance system for hazard collision avoidance in autonomous shipping. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1056–1065 (2016)Google Scholar
  42. 42.
    Sans-Muntadas, A., Pettersen, K.Y., Brekke, E.: Vision restricted path planning and control for underactuated vehicles. IFAC-PapersOnLine 49(23), 199–206 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Science and TechnologyUniversity of CamerinoCamerinoItaly
  2. 2.Department of Engineering CyberneticsNTNUTrondheimNorway
  3. 3.Istitut National de Recherche en Informatique et en Automatique (INRIA)Sophia AntipolisFrance
  4. 4.Research Center “E. Piaggio” & Dipartimento di Ingegneria dell’InformazioneUniversity of PisaPisaItaly
  5. 5.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenovaItaly

Personalised recommendations