On Some Methods to Derive Necessary and Sufficient Optimality Conditions in Vector Optimization



The aim of this paper is to address new approaches, in separate ways, to necessary and, respectively, sufficient optimality conditions in constrained vector optimization. In this respect, for the necessary optimality conditions that we derive, we use a kind of vectorial penalization technique, while for the sufficient optimality conditions we make use of an appropriate scalarization method. In both cases, the approaches couple a basic technique (of penalization or scalarization, respectively) with several results in variational analysis and optimization obtained by the authors in the last years. These combinations allow us to arrive to optimality conditions which are, in terms of assumptions made, new.


Vector optimization Necessary optimality conditions Sufficient optimality conditions Penalization Scalarization 

Mathematics Subject Classification

49J53 49K27 90C46 


  1. 1.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications. Springer, Berlin (2006)Google Scholar
  2. 2.
    Zheng, X.Y., Ng, K.F.: The Lagrange multiplier rule for multifunctions on Banach spaces. SIAM J. Optim. 17, 1154–1175 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bao, T.Q., Mordukhovich, B.S.: Necessary conditions for super minimizers in constrained multiobjective optimization. J. Glob. Optim. 43, 533–552 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. 122, 301–347 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Durea, M., Strugariu, R.: On some Fermat rules for set-valued optimization problems. Optimization 60, 575–591 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Klamroth, K., Tind, J.: Constrained optimization using multiple objective programming. J. Glob. Optim. 37, 325–355 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Günther, C., Tammer, Chr.: Relationships between constrained and unconstrained multi-objective optimization and application in location theory. Math. Methods Oper. Res. 84, 359–387 (2016)Google Scholar
  8. 8.
    Ye, J.J.: The exact penalty principle. Nonlinear Anal. 75, 1642–1654 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Durea, M., Strugariu, R., Tammer, Chr: On set-valued optimization problems with variable ordering structure. J. Glob. Optim. 61, 745–767 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Durea, M., Panţiruc, M., Strugariu, R.: Minimal time function with respect to a set of directions. Basic properties and applications. Optim. Methods Softw. 31, 535–561 (2016)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24, 1044–1049 (1986)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ward, D.E.: Characterizations of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory Appl. 80, 551–571 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making. North-Holland Publishing Co., New York (1983)MATHGoogle Scholar
  14. 14.
    Penot, J.-P.: Cooperative behavior of functions, sets and relations. Math. Methods Oper. Res. 48, 229–246 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Li, S., Penot, J.-P., Xue, X.: Codifferential calculus. Set-Valued Var. Anal. 19, 505–536 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Göpfert, A., Riahi, H., Tammer, Chr, Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003)MATHGoogle Scholar
  17. 17.
    Dauer, J.P., Saleh, O.A.: A characterization of proper minimal points as solutions of sublinear optimization problems. J. Math. Anal. Appl. 178, 227–246 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Apetrii, M., Durea, M., Strugariu, R.: A new penalization tool in scalar and vector optimizations. Nonlinear Anal. 107, 22–33 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  20. 20.
    Durea, M., Huyhn, V.N., Nguyen, H.T., Strugariu, R.: Metric regularity of composition set-valued mappings: metric setting and coderivative conditions. J. Math. Anal. Appl. 412, 41–62 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Durea, M., Tammer, Chr: Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58, 449–467 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48, 881–908 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Durea, M.: Remarks on strict efficiency in scalar and vector optimization. J. Glob. Optim. 47, 13–27 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Nam, N.M., Zălinescu, C.: Variational analysis of directional minimal time functions and applications to location problems. Set-Valued Var. Anal. 21, 405–430 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics“Al. I. Cuza” UniversityIasiRomania
  2. 2.Department of Mathematics and Informatics“Gh. Asachi” Technical UniversityIasiRomania
  3. 3.Institute of MathematicsMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations