Advertisement

Journal of Optimization Theory and Applications

, Volume 171, Issue 1, pp 209–227 | Cite as

Dual Descent Methods as Tension Reduction Systems

  • Glaydston de Carvalho Bento
  • João Xavier da Cruz Neto
  • Antoine Soubeyran
  • Valdinês Leite de Sousa Júnior
Article

Abstract

In this paper, driven by applications in Behavioral Sciences, wherein the speed of convergence matters considerably, we compare the speed of convergence of two descent methods for functions that satisfy the well-known Kurdyka–Lojasiewicz property in a quasi-metric space. This includes the extensions to a quasi-metric space of both the primal and dual descent methods. While the primal descent method requires the current step to be more or less half of the size of the previous step, the dual approach considers more or less half of the previous decrease in the objective function to be minimized. We provide applications to the famous “Tension systems approach” in Psychology.

Keywords

Dual descent Inexact proximal Worthwhile change Kurdyka–Lojasiewicz property Tension systems Variational rationality 

Mathematics Subject Classification

90C30 49M29 

Notes

Acknowledgments

The work was supported by CAPES and CNPq.

References

  1. 1.
    Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116(1–2), 5–16 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alaa, N.E., Pierre, M.: Convergence to equilibrium for discretized gradient-like systems with analytic features. IMA J. Numer. Anal. 33(4), 1291–1321 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebric and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. Math. Program. Ser. A 137, 91–129 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Moreno, F.G., Oliveira, P.R., Soubeyran, A.: A proximal algorithm with quasi distance. Application to habit’s formation. Optimization 61(12), 1383–1403 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fuentes, M., Malick, J., Lemaréchal, C.: Descentwise inexact proximal algorithms for smooth optimization. Comput. Optim. Appl. 53(3), 755–769 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Soubeyran, A.: Variational rationality, a theory of individual stability and change: worthwhile and ambidextry behaviors. GREQAM, Aix Marseillle University (2009, (pre-print))Google Scholar
  7. 7.
    Soubeyran, A.: Variational rationality and the nsatisfied man routines and the course pursuit between aspirations, capabilities and beliefs. GREQAM, Aix Marseillle University (2010, (pre-print))Google Scholar
  8. 8.
    Soubeyran, A.: Variational rationality. Part 1. Worthwhile stay and change approach-avoidance human dynamics ending in traps. GREQAM, Aix Marseillle University (2016, (pre-print))Google Scholar
  9. 9.
    Lewis, K.: Field theory in Social Science. Harper, New York (1951)Google Scholar
  10. 10.
    Bandura, A.: Failures in self-regulation: Energy depletion or selective disengagement? Psychological Inquiry 7(1), 20–24 (1996)CrossRefGoogle Scholar
  11. 11.
    Carver, C. S., Scheier, M. F.: On the structure of behavioral self-regulation. In: M. Boekaerts, P. R. Pintrich, and M. Zeidner, Handbook of Self-Regulation., pp. 42–80. San Diego: Academic Press (2000)Google Scholar
  12. 12.
    Gabriele Oettingen, G., Gollwitzer, P.: Strategies of setting and implementing goals. In: Social psychological foundations of clinical psychology ed. by James E. Maddux (Eds.). New York : Guilford, pp. 114–135 (2010)Google Scholar
  13. 13.
    De Ridder, D.T.D., de Wit, J.B.F.: Self-regulation in health behavior. Wiley, London (2006)CrossRefGoogle Scholar
  14. 14.
    Bento, G.C., Soubeyran, A.: A generalized inexact proximal point method for nonsmooth functions that satisfies kurdyka-Lojasiewicz inequality. Set-Valued Var. Anal. 23(3), 501–517 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bento, G.C., Soubeyran, A.: Generalized inexact proximal algorithms: Routine formation with resistance to change, following worthwhile changes. J. Optim. Theory Appl. 166(1), 172–187 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational analysis in psychological modeling. J. Optim. Theory Appl. 164(1), 290–315 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Minimal points, variational principles, and variable preferences in set optimization. J. Nonlinear Convex Anal. 16, 1511–1537 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Cruz, Bello: J.Y., Bouza Allende, G.: A Steepest Descent-Like Method for Variable Order Vector Optimization Problems. J. Optim. Theory Appl. 162(2), 371–391 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mordukhovich, B. S.: Variational analysis and generalized differentiation. I. Basic theory, Grundlehren der Mathematischen Wissenschaften, 330. Springer-Verlag, Berlin (2006)Google Scholar
  20. 20.
    Rockafellar, R.T., Wets, R.J.B.: Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317. Springer-Verlag, Berlin (1998)Google Scholar
  21. 21.
    Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lojasiewicz, S.: Une propriété topologique dessous-ensembles analytiques réels. Les Équations aux DérivéesPartielles, Éditions du centre National de la RechercheScientifique 87–89, (1963)Google Scholar
  24. 24.
    Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier (Grenoble) 48(3), 769–783 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2), 497–540 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bolte, J., Daniilidis, A., Lewis, A.: The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kurdyka, K., Mostowski, T., Parusiński, A.: Proof of the gradient conjecture of R. Thom. Ann. of Math. (2) 152(3), 763–792 (2000)Google Scholar
  29. 29.
    Lageman, C.: Convergence of gradient-like dynamical systems and optimization algorithms, Ph.D. Thesis, Universität Würzburg (2007)Google Scholar
  30. 30.
    Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc. 362(6), 3319–3363 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Bento, G.C.: Cruz Neto, J.X., Oliveira, P.R.: A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds. J. Optim. Theory Appl. 3, 743–755 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hosseini, S.: Convergence of nonsmooth descent methods via Kurdyka-Lojasiewicz inequality on Riemannian manifolds. Hausdorff Center for Mathematics and Institute for Numerical Simulation, University of Bonn (2015, (INS Preprint No. 1523))Google Scholar
  33. 33.
    Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Bento, G.C., Cruz Neto, J.X.: Finite termination of the proximalpoint method for convex functions on Hadamard manifolds. Optim 63(9), 1281–1288 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Glaydston de Carvalho Bento
    • 1
  • João Xavier da Cruz Neto
    • 2
  • Antoine Soubeyran
    • 3
  • Valdinês Leite de Sousa Júnior
    • 1
  1. 1.IMEUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.DMUniversidade Federal do PiauíTeresinaBrazil
  3. 3.Aix-Marseille School of Economics, CNRS and EHESSAix-Marseille UniversityMarseilleFrance

Personalised recommendations