Advertisement

Journal of Optimization Theory and Applications

, Volume 170, Issue 3, pp 1055–1059 | Cite as

A Modified Generalized Newton Method for Absolute Value Equations

  • Cui-Xia LiEmail author
Article

Abstract

In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given.

Keywords

Absolute value equation Generalized Newton method Convergence 

Mathematics Subject Classification

65F10 90C05 90C30 

Notes

Acknowledgments

The author would like to thank the anonymous referee for providing helpful suggestions, which greatly improved the paper. The author would like to thank Prof. Shi-Liang Wu for helpful discussion. This research was supported by NSFC (No. 11301009), Natural Science Foundations of Henan Province (No. 15A110007) and Project of Young Core Instructor of Universities in Henan Province (No. 2015GGJS-003).

References

  1. 1.
    Rohn, J.: A theorem of the alternatives for the equation \(Ax+B|x|=b\). Linear Multilinear A 52, 421–426 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36, 43–53 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cottle, R.W., Dantzig, G.B.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, San Diego (1992)zbMATHGoogle Scholar
  5. 5.
    Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419, 359–367 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Caccetta, L., Qu, B., Zhou, G.-L.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48, 45–58 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ketabchi, S., Moosaei, H.: An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput. Math. Appl. 64, 1882–1885 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhang, C., Wei, Q.-J.: Global and finite convergence of a generalized Newton method for absolute value equations. J. Optim. Theory Appl. 143, 391–403 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rohn, J.: An algorithm for solving the absolute value equations. Electron. J. Linear Algebra 18, 589–599 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Zhang, J.-J.: The relaxed nonlinear PHSS-like iteration method for absolute value equations. Appl. Math. Comput. 265, 266–274 (2015)MathSciNetGoogle Scholar
  11. 11.
    Mangasarian, O.L.: A hybrid algorithm for solving the absolute value equation. Optim. Lett. 9(7), 1469–1474 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8, 35–44 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Noor, M.A., Iqbal, J., Al-Said, E.: Residual iterative method for solving absolute value equations. Abstr. Appl. Anal. 2012 Article ID 406232, 9 (2012)Google Scholar
  14. 14.
    Salkuyeh, D.K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8, 2191–2202 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Noor, M.A., Iqbal, J., Noor, K.I., Al-Said, E.: On an iterative method for solving absolute value equations. Optim. Lett. 6, 1027–1033 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3, 101–108 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hu, S.-L., Huang, Z.-H., Zhang, Q.: A generalized Newton method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 235, 1490–1501 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsAnyang Normal UniversityAnyangPeople’s Republic of China

Personalised recommendations