Journal of Optimization Theory and Applications

, Volume 170, Issue 2, pp 419–436 | Cite as

Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers

  • Lukáš Adam
  • Martin Branda


We deal with chance constrained problems with differentiable nonlinear random functions and discrete distribution. We allow nonconvex functions both in the constraints and in the objective. We reformulate the problem as a mixed-integer nonlinear program and relax the integer variables into continuous ones. We approach the relaxed problem as a mathematical problem with complementarity constraints and regularize it by enlarging the set of feasible solutions. For all considered problems, we derive necessary optimality conditions based on Fréchet objects corresponding to strong stationarity. We discuss relations between stationary points and minima. We propose two iterative algorithms for finding a stationary point of the original problem. The first is based on the relaxed reformulation, while the second one employs its regularized version. Under validity of a constraint qualification, we show that the stationary points of the regularized problem converge to a stationary point of the relaxed reformulation and under additional condition it is even a stationary point of the original problem. We conclude the paper by a numerical example.


Chance constrained programming Optimality conditions  Regularization Algorithms Free MATLAB codes 

Mathematics Subject Classification

90C15 90C26 49M05 



The authors gratefully acknowledge the support from the Grant Agency of the Czech Republic under Project 15-00735S.


  1. 1.
    Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4(3), 235–263 (1958)CrossRefGoogle Scholar
  2. 2.
    Rockafellar, R., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26(7), 1443–1471 (2002)CrossRefGoogle Scholar
  3. 3.
    Wozabal, D., Hochreiter, R., Pflug, G.C.: A difference of convex formulation of value-at-risk constrained optimization. Optimization 59(3), 377–400 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15(2), 509–531 (2014)MathSciNetGoogle Scholar
  5. 5.
    Ehmke, J.F., Campbell, A.M., Urban, T.L.: Ensuring service levels in routing problems with time windows and stochastic travel times. Eur. J. Oper. Res. 240(2), 539–550 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24(2), 733–765 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Branda, M.: Optimization approaches to multiplicative tariff of rates estimation in non-life insurance. Asia Pac J. Oper. Res. 31(05), 1450,032 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Klein Haneveld, W., Streutker, M., van der Vlerk, M.: An ALM model for pension funds using integrated chance constraints. Ann. Oper. Res. 177(1), 47–62 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Beraldi, P., Bruni, M.: An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann. Oper. Res. 177(1), 127–137 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122(2), 247–272 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Prékopa, A.: Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution. Zeitschrift für Oper. Res. 34(6), 441–461 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Van Ackooij, W., Berge, V., De Oliveira, W., Sagastizabal, C.: Probabilistic optimization via approximate p-efficient points and bundle methods. Working Paper (2014)Google Scholar
  14. 14.
    Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kogan, A., Lejeune, M.: Threshold boolean form for joint probabilistic constraints with random technology matrix. Math. Program. 147(1–2), 391–427 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lejeune, M.A.: Pattern-based modeling and solution of probabilistically constrained optimization problems. Oper. Res. 60(6), 1356–1372 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lejeune, M.A., Margot, F.: Solving chance-constrained optimization problems with stochastic quadratic inequalities. Tepper Working Paper E8 (2014)Google Scholar
  18. 18.
    Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp. 267–351. Elsevier, Amsterdam (2003)Google Scholar
  19. 19.
    Dentcheva, D., Martinez, G.: Augmented Lagrangian method for probabilistic optimization. Ann. Oper. Res. 200(1), 109–130 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sun, H., Xu, H., Wang, Y.: Asymptotic analysis of sample average approximation for stochastic optimization problems with joint chance constraints via conditional value at risk and difference of convex functions. J. Optim. Theory Appl. 161(1), 257–284 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Haneveld, W., van der Vlerk, M.: Integrated chance constraints: reduced forms and an algorithm. Comput. Manag. Sci. 3(4), 245–269 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hong, L.J., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach. Oper. Res. 59(3), 617–630 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cheng, J., Houda, M., Lisser, A.: Chance constrained 0–1 quadratic programs using copulas. Optim. Lett. 9(7), 1283–1295 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Henrion, R., Möller, A.: A gradient formula for linear chance constraints under Gaussian distribution. Math. Oper. Res. 37(3), 475–488 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Raike, W.M.: Dissection methods for solutions in chance constrained programming problems under discrete distributions. Manag. Sci. 16(11), 708–715 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  28. 28.
    Flegel, M.L., Kanzow, C.: On the Guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54(6), 517–534 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Burdakov, O., Kanzow, C., Schwartz, A.: On a reformulation of mathematical programs with cardinality constraints. In: Gao, D., Ruan, N., Xing, W. (eds.) Advances in Global Optimization, Springer Proceedings in Mathematics & Statistics, vol. 95, pp. 3–14. Springer International Publishing, Berlin (2015)Google Scholar
  30. 30.
    Červinka, M., Kanzow, C., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. (2016). doi: 10.1007/s10107-016-0986-6
  31. 31.
    Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indicator constraints. Math. Program. 151(1), 191–223 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Shan, F., Zhang, L., Xiao, X.: A smoothing function approach to joint chance-constrained programs. J. Optim. Theory Appl. 163(1), 181–199 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ioffe, A.D., Outrata, J.: On metric and calmness qualification conditions in subdifferential calculus. Set Valued Anal. 16(2–3), 199–227 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Information Theory and Automation (ÚTIA)Czech Academy of SciencesPrague 8Czech Republic
  2. 2.Department of Probability and Mathematical Statistics, Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic

Personalised recommendations