Optimal Control of a Linear Unsteady Fluid–Structure Interaction Problem

Article

Abstract

In this paper, we consider optimal control problems governed by linear unsteady fluid–structure interaction problems. Based on a novel symmetric monolithic formulation, we derive optimality systems and provide regularity results for optimal solutions. The proposed formulation allows for natural application of gradient-based optimization algorithms and for space–time finite element discretizations.

Keywords

Unsteady fluid–structure interaction Optimal control  Adjoint equation Optimality conditions 

Mathematics Subject Classification

35B65 35M33 49K20 74F10 

Notes

Acknowledgments

The first author gratefully acknowledges the financial support by the Federal Ministry of Education and Research (BMBF) within the Research Grant 05M2013 “ExtremSimOpt: Modeling, Simulation and Optimization of Fluids in Extreme Conditions.” Furthermore, the first author gratefully acknowledges the support from the International Research Training Group IGDK 1754, funded by DFG and FWF, and from the International Graduate School of Science and Engineering at the Technical University of Munich.

References

  1. 1.
    Bertoglio, C., Barber, D., Gaddum, N., Valverde, I., Rutten, M., Beerbaum, P., Moireau, P., Hose, R., Gerbeau, J.: Identification of artery wall stiffness: in vitro validation and in vivo results of data assimilation procedure applied to a 3D fluid-structure interaction model. J. Biomech. 47(5), 1027–1034 (2014)CrossRefGoogle Scholar
  2. 2.
    Bertoglio, C., Chapelle, D., Fernández, M., Gerbeau, J.F., Moireau, P.: State observers of a vascular fluid-structure interaction model through measurements in the solid. Comput. Methods Appl. mech. Eng. 256, 149–168 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bertoglio, C., Moireau, P., Gerbeau, J.F.: Sequential parameter estimation for fluid-structure problems: application to hemodynamics. Int. J. Numer. Meth. Biomed Eng. 28, 434–455 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D’Elia, M., Mirabella, L., Passerini, T., Perego, M., Piccinelli, M.,Vergara, C.,Veneziani, A.: Applications of variational data assimilation in computational hemodynamics. In: Modeling of Physiological Flows. MS&A—Modeling, Simulation and Applications, vol. 5, pp. 363–394. Springer (2012)Google Scholar
  5. 5.
    Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometric framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29, 741–776 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Razzaq, M., Tsotskas, C., Turek, S., Kipouros, T., Savill, M., Hron, J.: Multi-objective optimization of a fluid structure interaction benchmarking. CMES Comput. Model. Eng. Sci. 90(4), 303–337 (2013)MathSciNetGoogle Scholar
  7. 7.
    Degroote, J., Hojjat, M., Stavropoulou, E., Wüchner, R., Bletzinger, K.U.: Partitioned solution of an unsteady adjoint for strongly coupled fluid-structure interactions and application to parameter identification of a one-dimensional problem. Struct. Multidiscip. Optim. 47, 77–94 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Martin, V., Clément, F., Decoene, A., Gerbeau, J.F.: Parameter identification for a one-dimensional blood flow model. ESAIM Proc. 14, 174–200 (2005)MathSciNetMATHGoogle Scholar
  9. 9.
    Richter, T., Wick, T.: Optimal control and parameter estimation for stationary fluid–structure interaction problems. SIAM J. Sci. Comput. 35(5), B1085–B1104 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bertagna, L., D’Elia, M., Perego, M., Veneziani, A.: Data assimilation in cardiovascular fluid-structure interaction problems: an introduction. In: Fluid-Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics, pp. 395–481. Springer (2014)Google Scholar
  11. 11.
    Perego, M., Veneziani, A., Vergara, C.: A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid–structure interaction problem. SIAM J. Sci. Comput. 33(3), 1181–1211 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Moubachir, M., Zolesio, J.: Moving Shape Analysis and Control: Applications to Fluid Structure Interaction. Chapmann & Hall/CRC, Boca Raton, FL (2006)Google Scholar
  13. 13.
    Bucci, F., Lasiecka, I.: Optimal boundary control with critical penalization for a PDE model of fluid–solid interaction. Calc. Var. 37, 217–235 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lasiecka, I., Tuffaha, A.: Optimal feedback synthesis for Bolza control problem arising in linearized fluid structure interaction. Int. Ser. Numer. Math. 158, 171–190 (2009)MathSciNetMATHGoogle Scholar
  15. 15.
    Lasiecka, I., Tuffaha, A.: Riccati theory and singular estimates for a Bolza control problem arising in linearized fluid–structure interaction. Syst. Control Lett. 58, 499–509 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis methods and free-form deformation. Int. J. Numer. Methods Fluids 70, 646–670 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22(5), 813–833 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007). (electronic)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems part II: problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Meidner, D., Vexler, B.: A priori error analysis of the Petrov-Galerkin Crank-Nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Razzaq, M.: Finite element simulation techniques for incompressible fluid-structure interaction with applications to bio-engineering and optimization. Ph.D. thesis, Technische Universität Dortmund (2011)Google Scholar
  23. 23.
    Wick, T.: Adaptive finite element simulation of fluid-structure interaction with application to heart-valve dynamics. Ph.D. thesis, University of Heidelberg (2011)Google Scholar
  24. 24.
    Du, Q., Gunzburger, M.D., Hou, L., Lee, J.: Analysis of a linear fluid–structure interaction problem. Discrete Contin. Dyn. Syst. 9(3), 633–650 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Du, Q., Gunzburger, M.D., Hou, L., Lee, J.: Semidiscrete finite element approximation of a linear fluid–structure interaction problem. SIAM J. Numer. Anal. 42(1), 1–29 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Avalos, G., Lasiecka, I., Triggiani, R.: Higher regularity of a coupled parabolic-hyperbolic fluid–structure interactive system. Georgian Math. J. 15(3), 403–437 (2008)MathSciNetMATHGoogle Scholar
  27. 27.
    Avalos, G., Triggiani, R.: The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties. In: Fluids and waves, Contemp. Math., vol. 440, pp. 15–54. Amer. Math. Soc., Providence, RI (2007)Google Scholar
  28. 28.
    Avalos, G., Triggiani, R.: Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete Contin. Dyn. Syst. Ser. S 2(3), 417–447 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Avalos, G., Triggiani, R.: Fluid-structure interaction with and without internal dissipation of the structure: a contrast study in stability. Evol. Equ. Control Theory 2(4), 563–598 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Avalos, G., Triggiani, R.: Uniform stabilization of a coupled PDE system arising in fluid–structure interaction with boundary dissipation at the interface. Discrete Contin. Dyn. Syst. 22(4), 817–833 (2008)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Avalos, G., Triggiani, R.: Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system. J. Evol. Equ. 9(2), 341–370 (2009)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Avalos, G., Lasiecka, I., Triggiani, R.: Beyond lack of compactness and lack of stability of a coupled parabolic-hyperbolic fluid-structure system. In: Optimal control of coupled systems of partial differential equations, Internat. Ser. Numer. Math., vol. 158, pp. 1–33. Birkhäuser Verlag, Basel (2009)Google Scholar
  33. 33.
    Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness and small data global existence for an interface damped free boundary fluid-structure model. Nonlinearity 27, 467–499 (2014)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zhang, X., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid–structure interaction. Arch. Rational Mech. Anal. 184, 49–120 (2007)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Existence of the energy-level weak solutions for a nonlinear fluid–structure interaction model. Recent Trends Appl. Anal. 440, 5582 (2007)MathSciNetMATHGoogle Scholar
  36. 36.
    Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Smoothness of weak solutions to a nonlinear fluid–structure interaction model. Indiana Univ. Math. J. 57(3), 1173–1207 (2008)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a Navier-Stokes-Lamé system on a domain with non-flat boundary. Nonlinearity 24, 159–176 (2011)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a nonlinear fluid structure interaction system. J. Differ. Equ. 247, 1452–1478 (2009)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Dunne, T., Rannacher, R., Richter, T.: Numerical simulation of fluid-structure interaction based on monolithic variational formulations. In: G.P. Galdi, R. Rannacher (eds.) Contemporary Challenges in Mathematical Fluid Mechanics. World Scientific (2009)Google Scholar
  40. 40.
    Richter, T., Wick, T.: Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput. Methods Appl. Mech. Eng. 199, 2633–2642 (2010)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Johnson, C.: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Method Appl. Mech. 107(1–2), 117–129 (1993)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Grisvards, P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program (1985)Google Scholar
  43. 43.
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Die Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1972)CrossRefGoogle Scholar
  44. 44.
    Temam, R.: Navier–Stokes equations. Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1984)Google Scholar
  45. 45.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, New York (1994)MATHGoogle Scholar
  46. 46.
    Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg+Teubner, Wiesbaden (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty for MathematicsTechnical University of MunichGarching bei MünchenGermany

Personalised recommendations