Journal of Optimization Theory and Applications

, Volume 171, Issue 2, pp 354–364 | Cite as

Reduced Pairs of Compact Convex Sets and Ordered Median Functions

  • Jerzy Grzybowski
  • Diethard Pallaschke
  • Ryszard Urbański
Article
  • 125 Downloads

Abstract

We prove that in finite dimensional spaces every ordered median function is the Minkowski dual of a reduced pair of polytopes. This implies a very general theorem on the representation of an ordered median function as a uniquely determined difference of two sublinear functions up to adding and subtracting one and the same arbitrary sublinear function.

Keywords

Minkowski duality Reduced pairs of compact convex sets Piecewise linear functions 

Mathematics Subject Classification

26B25 52A07 52A20 

References

  1. 1.
    Nickel, S., Puerto, J.: Location Theory—A Unified Approach. Springer, Berlin (2005)MATHGoogle Scholar
  2. 2.
    Demyanov, V.F., Rubinov, A.M.: Quasidifferential calculus. Optimization Software Inc., Publications Division, New York (1986)Google Scholar
  3. 3.
    Hörmander, L.: Sur la fonction d’ appui des ensembles convexes dans un espace localement convexe. Arkiv för Matematik 3, 181–186 (1954)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Pallaschke, D., Urbański, R.: Pairs of Compact Convex Sets—Fractional Arithmetic with Convex Sets. Kluwer academic publishers, Dordrecht (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Melzer, D.: On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex functions. Math. Program. Stud. 29, 118–134 (1986)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bauer, Ch.: Minimal and reduced pairs of convex bodies. Geom. Dedic. 62, 179–192 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Demyanov, V.F., Rubinov, A.M. (eds.): Quasidifferentiability and Related Topics. Kluwer Academic Publisher, Dortrecht (2001)Google Scholar
  8. 8.
    Rådström, H.: An embedding theorem for spaces of convex sets. Proc. Am. Math. Soc. 3, 165–169 (1952)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Urbański, R.: A generalization of the Minkowski-Rådström-Hörmander theorem. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 24, 709–715 (1976)MATHGoogle Scholar
  10. 10.
    Pinsker, A.G.: The space of convex sets of a locally convex space. Tr. Leningr. Eng. Econ. Inst. 63, 13–17 (1966)MathSciNetGoogle Scholar
  11. 11.
    Urbański, R.: On minimal convex pairs of convex compact sets. Arch. Math. 67, 226–238 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Second expanded edition. Cambridge University Press, Cambridge (2014)Google Scholar
  13. 13.
    Demyanov, V.F., Caprari, E.: Minimality of convex sets equivalent on a cone. Vestnik St. Petersburg Univ. Math. 31, 28–33 (1998)Google Scholar
  14. 14.
    Grzybowski, J.: Minimal pairs of compact convex sets. Arch. Math. 63, 173–181 (1994)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Grzybowski, J., Urbański, R.: Minimal pairs of bounded closed convex sets. Studia Math. 126, 95–99 (1997)MathSciNetMATHGoogle Scholar
  16. 16.
    Grzybowski, J., Urbański, R.: On the number of minimal pairs of compact convex sets that are not translates of one another. Studia Math. 158, 59–63 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pallaschke, D., Urbańska, W., Urbański, R.: C-minimal pairs of compact convex sets. J. Convex Anal. 4, 1–25 (1997)MathSciNetMATHGoogle Scholar
  18. 18.
    Pallaschke, D., Urbański, R.: A continuum of minimal pairs of compact convex sets which are not connected by translations. J. Convex Anal. 3, 83–95 (1996)MathSciNetMATHGoogle Scholar
  19. 19.
    Pallaschke, D., Urbański, R.: On the separation and order law of cancellation for bounded sets. Optimization 51, 487–496 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Scholtes, S.: Minimal pairs of convex bodies in two dimensions. Mathematika 39, 267–273 (1992)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Grzybowski, J., Nickel, S., Pallaschke, D., Urbański, R.: Ordered median functions and symmetries. Optimization 60, 801–811 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kalcsics, J., Nickel, S., Puerto, J., Tamir, A.: Algorithmic results for ordered median problems. Op. Res. Lett. 30, 149–158 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Puerto, J., Fernández, F.R.: Geometrical properties of the symmetrical single facility location problem. J. Nonlinear Convex Anal. 1, 321–342 (2000)MathSciNetMATHGoogle Scholar
  24. 24.
    Shepard, G.C.: Decomposable convex polyhedra. Mathematika 10, 89–95 (1963)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jerzy Grzybowski
    • 1
  • Diethard Pallaschke
    • 2
  • Ryszard Urbański
    • 1
  1. 1.Adam Mickiewicz UniversityPoznańPoland
  2. 2.University of Karlsruhe – KITKarlsruheGermany

Personalised recommendations