Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions

  • Rashed Khanjani Shiraz
  • Madjid Tavana
  • Debora Di Caprio
  • Hirofumi Fukuyama


Geometric programming is a powerful optimization technique widely used for solving a variety of nonlinear optimization problems and engineering problems. Conventional geometric programming models assume deterministic and precise parameters. However, the values observed for the parameters in real-world geometric programming problems often are imprecise and vague. We use geometric programming within an uncertainty-based framework proposing a chance-constrained geometric programming model whose coefficients are uncertain variables. We assume the uncertain variables to have normal, linear and zigzag uncertainty distributions and show that the corresponding uncertain chance-constrained geometric programming problems can be transformed into conventional geometric programming problems to calculate the objective values. The efficacy of the procedures and algorithms is demonstrated through numerical examples.


Uncertainty theory Uncertain variable Linear uncertainty distribution Normal uncertainty distribution Zigzag uncertainty distribution 

Mathematics Subject Classification

90C46 65K05 28B99 90C48 49K35 



The authors would like to thank the anonymous reviewers and the editor for their insightful comments and suggestions.


  1. 1.
    Chu, C., Wong, D.F.: VLSI circuit performance optimization by geometric programming. Ann. Oper. Res. 105, 37–60 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hershenson, M.D., Boyd, S.P., Lee, T.H.: Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput. Aid. Design. 20, 1–21 (2001)CrossRefGoogle Scholar
  3. 3.
    Avriel, M., Dembo, R., Passy, U.: Solution of generalized geometric programs. Int. J. Numer. Method Eng. 9, 149–168 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beightler, C.S., Philips, D.T.: Applied Geometric Programming. Wiley, New York (1976)Google Scholar
  5. 5.
    Choi, J.C., Bricker, D.L.: Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 10, 957–961 (1996)CrossRefzbMATHGoogle Scholar
  6. 6.
    Scott, C.H., Jefferson, T.R.: Allocation of resources in project management. Int. J. Syst. Sci. 26, 413–420 (1995)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cheng, T.C.E.: An economic order quantity model with demand-dependent unit production cost and imperfect production process. IIE Trans. 23, 23–28 (1991)CrossRefGoogle Scholar
  8. 8.
    Jung, H., Klein, C.M.: Optimal inventory policies under decreasing cost functions via geometric programming. Eur. J. Oper. Res. 132, 628–642 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kim, D., Lee, W.J.: Optimal joint pricing and lot sizing with fixed and variable capacity. Eur. J. Oper. Res. 109, 212–227 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lee, W.J.: Determining order quantity and selling price by geometric programming. Optimal solution, bounds, and sensitivity. Decis. Sci. 24, 76–87 (1993)CrossRefGoogle Scholar
  11. 11.
    Roy, T.K., Maiti, M.: A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. Eur. J. Oper. Res. 99, 425–432 (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Worrall, B.M., Hall, M.A.: The analysis of an inventory control model using posynomial geometric programming. Int. J. Prod. Res. 20, 657–667 (1982)CrossRefGoogle Scholar
  13. 13.
    Duffin, R.J., Peterson, E.L., Zener, C.: Geometric Programming Theory and Applications. Wiley, New York (1967)zbMATHGoogle Scholar
  14. 14.
    Duffin, R.J., Peterson, E.L.: Geometric programming with signomials. J. Optim. Theory Appl. 11, 3–35 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fang, S.C., Peterson, E.L., Rajasekera, J.R.: Controlled dual perturbations for posynomial programs. Eur. J. Oper. Res. 35, 111–117 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kortanek, K.O., No, H.: A second order affine scaling algorithm for the geometric programming dual with logarithmic barrier. Optimization 23, 303–322 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kortanek, K.O., Xu, X., Ye, Y.: An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76, 155–181 (1997)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–369 (1997)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rajgopal, J.: An alternative approach to the refined duality theory of geometric programming. J. Math. Anal. Appl. 167, 266–288 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rajgopal, J., Bricker, D.L.: Posynomial geometric programming as a special case of semi-infinite linear programming. J. Optim. Theory Appl. 66, 455–475 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rajgopal, J., Bricker, D.L.: Solving posynomial geometric programming problems via generalized linear programming. Comput. Optim. Appl. 21, 95–109 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yang, H.H., Bricker, D.L.: Investigation of path-following algorithms for signomial geometric programming problems. Eur. J. Oper. Res. 103, 230–241 (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zhu, J., Kortanek, K.O., Huang, S.: Controlled dual perturbations for central path trajectories in geometric programming. Eur. J. Oper. Res. 73, 524–531 (1992)CrossRefzbMATHGoogle Scholar
  24. 24.
    Avriel, M., Wilde, D.J.: Engineering design under uncertainty. I&EC Process Des. Dev. 8(1), 127–131 (1969)CrossRefGoogle Scholar
  25. 25.
    Dupačová, J.: Stochastic geometric programming with an application. Kybernetika 46(3), 374–386 (2010)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Liu, S.T.: A geometric programming approach to profit maximization. Appl. Math. Comput. 182(2), 1093–1097 (2006)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Liu, S.T.: Posynomial geometric programming with parametric uncertainty. Eur. J. Oper. Res. 168, 345–353 (2006b)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu, S.T.: Geometric programming with fuzzy parameters in engineering optimization. Int. J. Approx. Reason. 46(3), 484–498 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, S.T.: Posynomial geometric programming with interval exponents and coefficients. Eur. J. Oper. Res. 186(1), 17–27 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, S.T.: Fuzzy measures for profit maximization with fuzzy parameters. J. Comput. Appl. Math. 236(6), 1333–1342 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Tsai, J.F., Li, H.L., Hu, N.Z.: Global optimization for signomial discrete programming problems in engineering design. Eng. Optim. 34, 613–622 (2002)CrossRefGoogle Scholar
  32. 32.
    Li, H.L., Tsai, J.F.: Treating free variables in generalized geometric global optimization programs. J. Glob. Optim. 33, 1–13 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tsai, J.F., Lin, M.H., Hu, Y.C.: On generalized geometric programming problems with non-positive variables. Eur. J. Oper. Res. 178(1), 10–19 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Tsai, J.F.: Treating free variables in generalized geometric programming problems. Comput. Chem. Eng. 33, 239–243 (2009)CrossRefGoogle Scholar
  35. 35.
    Tsai, J.F., Lin, M.H.: An optimization approach for solving signomial discrete programming problems with free variables. Comput. Chem. Eng. 30, 1256–1263 (2006)CrossRefGoogle Scholar
  36. 36.
    Lin, M.H., Tsai, J.F.: Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems. Eur. J. Oper. Res. 216, 17–25 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Liu, B.: Uncertainty Theory, 4th edn. Springer, Berlin (2015)zbMATHGoogle Scholar
  38. 38.
    Liu, B.: Some research problems in uncertainty theory. J. Uncertain Syst. 3(1), 3–10 (2009)Google Scholar
  39. 39.
    Peng, J., Yao, K.: A new option pricing model for stocks in uncertainty markets. Int. J. Oper. Res. 8(2), 18–26 (2011)MathSciNetGoogle Scholar
  40. 40.
    Liu, B.: Uncertain risk analysis and uncertain reliability analysis. J. Uncertain Syst. 4(3), 163–170 (2010)Google Scholar
  41. 41.
    Wang, X.S., Gao, Z.C., Guo, H.Y.: Delphi method for estimating uncertainty distributions. Information 15(2), 449–460 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Wang, X.S., Gao, Z.C., Guo, H.Y.: Uncertain hypothesis testing for expert’s empirical data. Math. Comput. Model. 55(3–4), 1478–1482 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Liu, B.: Uncertain set theory and uncertain inference rule with application to uncertain control. J. Uncertain Syst. 4(2), 83–98 (2010)Google Scholar
  44. 44.
    Zhu, Y.: Uncertain optimal control with application to a portfolio selection model. Cybern. Syst. 41(7), 535–547 (2010)CrossRefzbMATHGoogle Scholar
  45. 45.
    Li, S., Peng, J., Zhang, B.: The uncertain premium principle based on the distortion function. Insur. Math. Econ. 53, 317–324 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Han, S., Peng, Z., Wang, S.: The maximum flow problem of uncertain network. Inf. Sci. 265, 167–175 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Ding, S.: The \(\alpha \)-maximum flow model with uncertain capacities. Appl. Math. Model. 39(7), 2056–2063 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Peterson, E.L.: The fundamental relations between geometric programming duality, parametric programming duality, and ordinary Lagrangian duality. Ann. Oper. Res. 105, 109–153 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Liu, B.: Extreme value theorems of uncertain process with application to insurance risk model. Soft Comput. 17(4), 549–556 (2013)CrossRefzbMATHGoogle Scholar
  50. 50.
    Liu, S.T.: Profit maximization with quantity discount: an application of geometric program. Appl. Math. Comput. 190(2), 1723–1729 (2007a)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Hamidi, Sadjadi S.J., Hesarsorkh, A., Mohammadi, M., Bonyadi Naeini, A.: Joint pricing and production management: a geometric programming approach with consideration of cubic production cost function. J. Ind. Eng. Int. 11(2), 209–223 (2015)CrossRefGoogle Scholar
  52. 52.
    Samadi, F., Mirzazadeh, A., Pedram, M.: Fuzzy pricing, marketing and service planning in a fuzzy inventory model: a geometric programming approach. Appl. Math. Model. 37, 6683–6694 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rashed Khanjani Shiraz
    • 1
  • Madjid Tavana
    • 2
    • 3
  • Debora Di Caprio
    • 4
    • 5
  • Hirofumi Fukuyama
    • 6
  1. 1.School of Mathematics ScienceUniversity of TabrizTabrizIran
  2. 2.Distinguished Chair of Business Systems and Analytics, Business Systems and Analytics DepartmentLa Salle UniversityPhiladelphiaUSA
  3. 3.Business Information Systems Department, Faculty of Business Administration and EconomicsUniversity of PaderbornPaderbornGermany
  4. 4.Department of Mathematics and StatisticsYork UniversityTorontoCanada
  5. 5.Polo Tecnologico IISS G. GalileiBolzanoItaly
  6. 6.Faculty of CommerceFukuoka UniversityFukuokaJapan

Personalised recommendations