Journal of Optimization Theory and Applications

, Volume 170, Issue 2, pp 687–709 | Cite as

The Cone Condition and Nonsmoothness in Linear Generalized Nash Games

Article

Abstract

We consider linear generalized Nash games and introduce the so-called cone condition, which characterizes the smoothness of a gap function that arises from a reformulation of the generalized Nash equilibrium problem as a piecewise linear optimization problem based on the Nikaido–Isoda function. Other regularity conditions such as the linear independence constraint qualification or the strict Mangasarian–Fromovitz condition are only sufficient for smoothness, but have the advantage that they can be verified more easily than the cone condition. Therefore, we present special cases, where these conditions are not only sufficient, but also necessary for smoothness of the gap function. Our main tool in the analysis is a global extension of the gap function that allows us to overcome the common difficulty that its domain may not cover the whole space.

Keywords

Generalized Nash equilibrium problem Nikaido–Isoda function Piecewise linear function Constraint qualification Genericity Parametric optimization 

Mathematics Subject Classification

91A06 91A10 90C31 

References

  1. 1.
    Nash, J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. 38, 886–893 (1952)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fischer, A., Herrich, M., Schönefeld, K.: Generalized Nash equilibrium problems—recent advances and challenges. Pesquisa Oper. 34, 521–558 (2014)CrossRefGoogle Scholar
  6. 6.
    Schiro, D.A., Pang, J.-S., Shanbhag, U.V.: On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke’s method. Math. Program. 142, 1–46 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dreves, A.: Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets. Math. Methods Oper. Res. 80, 139–159 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dreves, A., Facchinei, F., Kanzow, C., Sagratella, S.: On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J. Optim. 21, 1082–1108 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)MATHGoogle Scholar
  10. 10.
    Von Heusinger, A., Kanzow, C.: Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions. Comput. Optimiz. Appl. 43, 353–377 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Auslender, A.: Optimisation: Méthodes Numériques. Masson, Paris (1976)MATHGoogle Scholar
  12. 12.
    Giannessi, F.: Separation of sets and gap functions for quasi-variational inequalities. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequality and Network Equilibrium Problems, pp. 101–121. Plenum Press, New York (1995)CrossRefGoogle Scholar
  13. 13.
    Harms, N., Kanzow, C., Stein, O.: On differentiability properties of player convex generalized Nash equilibrium problems. Optimization 64, 365–388 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Stein, O., Sudermann-Merx, N.: On smoothness properties of optimal value functions at the boundary of their domain under complete convexity. Math. Methods Oper. Res. 79, 327–352 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nikaido, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 5, 807–815 (1955)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dreves, A., Kanzow, C., Stein, O.: Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems. J. Global Optim. 53, 587–614 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Danskin, J.M.: The Theory of Max-Min and its Applications to Weapons Allocation Problems. Springer, New York (1967)CrossRefMATHGoogle Scholar
  18. 18.
    Kyparisis, J.: On uniqueness of Kuhn-Tucker multipliers in nonlinear programming. Math. Program. 32, 242–246 (1985)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wachsmuth, G.: On LICQ and the uniqueness of Lagrange multipliers. Operat. Res. Lett. 41, 78–80 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefMATHGoogle Scholar
  21. 21.
    Cooper, W.W., Seiford, L.M., Tone, K.: Data Envelopment Analysis. Springer, New York (2007)MATHGoogle Scholar
  22. 22.
    Harms, N., Hoheisel, T., Kanzow, C.: On a smooth dual gap function for a class of player convex generalized Nash equilibrium problems. J. Optim. Theory Appl., online first, (2014) doi:10.1007/s10957-014-0631-6
  23. 23.
    Jongen, HTh, Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions. Kluwer, Dordrecht (2000)MATHGoogle Scholar
  24. 24.
    Stein, O.: Bi-Level Strategies in Semi-Infinite Programming. Kluwer, Boston (2003)CrossRefMATHGoogle Scholar
  25. 25.
    Ralph, D., Stein, O.: The C-Index: a new stability concept for quadratic programs with complementarity constraints. Math. Oper. Res. 36, 503–526 (2011)MathSciNetMATHGoogle Scholar
  26. 26.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)CrossRefMATHGoogle Scholar
  27. 27.
    Van Hang, N.T., Yen, N.D.: On the problem of minimizing a difference of polyhedral convex functions under linear constraints. J. Optim. Theory Appl., online first, (2015). doi:10.1007/s10957-015-0769-x
  28. 28.
    Izmailov, A.F., Solodov, M.V.: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it. TOP 23, 1–26 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations