Journal of Optimization Theory and Applications

, Volume 167, Issue 1, pp 102–117

# Continuous Piecewise Linear Delta-Approximations for Bivariate and Multivariate Functions

Article

## Abstract

For functions depending on two variables, we automatically construct triangulations subject to the condition that the continuous, piecewise linear approximation, under-, or overestimation, never deviates more than a given $$\delta$$-tolerance from the original function over a given domain. This tolerance is ensured by solving subproblems over each triangle to global optimality. The continuous, piecewise linear approximators, under-, and overestimators, involve shift variables at the vertices of the triangles leading to a small number of triangles while still ensuring continuity over the entire domain. For functions depending on more than two variables, we provide appropriate transformations and substitutions, which allow the use of one- or two-dimensional $$\delta$$-approximators. We address the problem of error propagation when using these dimensionality reduction routines. We discuss and analyze the trade-off between one-dimensional (1D) and two-dimensional (2D) approaches, and we demonstrate the numerical behavior of our approach on nine bivariate functions for five different $$\delta$$-tolerances.

### Keywords

Global optimization Nonlinear programming Mixed-integer nonlinear programming Nonconvex optimization  Error propagation

90C26

### References

1. 1.
Misener, R., Floudas, C.A.: Piecewise-linear approximations of multidimensional functions. J. Optim. Theory Appl. 145, 120–147 (2010)
2. 2.
Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and its Applications, pp. 287–314. Springer, New York (2012)
3. 3.
Timpe, C., Kallrath, J.: Optimal planning in large multi-site production networks. Eur. J. Oper. Res. 126(2), 422–435 (2000)
4. 4.
Kallrath, J.: Solving planning and design problems in the process industry using mixed integer and global optimization. Ann. Oper. Res. 140, 339–373 (2005)
5. 5.
Zheng, Q.P., Rebennack, S., Iliadis, N.A., Pardalos, P.M.: Optimization models in the natural gas industry. In: Rebennack, S., Pardalos, P.M., Pereira, P.M., Pereira, M.V., Iliadis, N.A. (eds.) Handbook of Power Systems I, pp. 121–148. Springer, New York (2010)
6. 6.
Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)
7. 7.
Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II. Energy Syst. 3(3), 259–289 (2012)
8. 8.
Geißler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with applications in gas network optimization. Dissertation, Universität Erlangen-Nürnberg (2011)Google Scholar
9. 9.
Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. Ser. B 103, 251–282 (2005)
10. 10.
D’Ambrosio, C., Lodi, A., Martello, S.: Piecewise linear approximation of functions of two variables in MILP models. Oper. Res. Lett. 38, 39–46 (2010)
11. 11.
Rebennack, S., Kallrath, J.: Continuous piecewise linear delta-approximations for univariate functions: computing minimal breakpoint systems. J. Optim. Theory Appl. (2014). doi:10.1007/s10957-014-0687-3
12. 12.
Kallrath, J., Rebennack, S.: Computing area-tight piecewise linear overestimators, underestimators and tubes for univariate functions. In: Butenko, S., Floudas, C., Rassias, T. (eds.) Optimization in Science and Engineering. Springer, Berlin (2014)Google Scholar
13. 13.
Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128, 49–72 (2011)
14. 14.
Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, vol. 2. Kluwer, Dordrecht (2000)