Advertisement

Journal of Optimization Theory and Applications

, Volume 167, Issue 1, pp 243–271 | Cite as

On the Infinite-Horizon Optimal Control of Age-Structured Systems

  • B. Skritek
  • V. M. VeliovEmail author
Article

Abstract

The paper presents necessary optimality conditions of Pontryagin’s type for infinite-horizon optimal control problems for age-structured systems with state- and control-dependent boundary conditions. Despite the numerous applications of such problems in population dynamics and economics, a “complete” set of optimality conditions is missing in the existing literature, because it is problematic to define in a sound way appropriate transversality conditions for the corresponding adjoint system. The main novelty is that (building on recent results by Aseev and the second author) the adjoint function in the Pontryagin principle is explicitly defined, which avoids the necessity of transversality conditions. The result is applied to several models considered in the literature.

Keywords

Age-structured systems Infinite-horizon optimal control  Pontryagin’s maximum principle Population dynamics  Vintage economic models 

Mathematics Subject Classification

49K20 93C20 91B99 35F15 

Notes

Acknowledgments

This research was supported by the Austrian Science Foundation (FWF) under Grant No. I 476-N13.

References

  1. 1.
    Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)zbMATHGoogle Scholar
  2. 2.
    Barucci, E., Gozzi, F.: Technology adoption and accumulation in a vintage capital model. J. Econ. 74(1), 1–30 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Boucekkine, R., De la Croix, D., Licandro, O.: Vintage capital growth theory: three breakthroughs. Front. Econ. Glob. 11, 87–116 (2001)CrossRefGoogle Scholar
  4. 4.
    Feichtinger, G., Tragler, G., Veliov, V.M.: Optimality conditions for age-structured control systems. J. Math. Anal. Appl. 288, 47–68 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Aseev, S.M., Kryazhimskii, A.V.: The pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J. Control Optim. 43, 1094–1119 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Aseev, S.M., Veliov, V.M.: Needle variations in infinite-horizon optimal control. Contemp. Math. 619, 1–17 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Krastanov, M.I., Ribarska, N.K., Tsachev, Ts.Y.: A pontryagin maximum principle for infinite-dimensional problems. SIAM J. Control Optim. 49(5), 2155–2182 (2011)Google Scholar
  8. 8.
    Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Kluwer, Dordrecht (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Feichtinger, G., Hartl, R.F., Kort, P.M., Veliov, V.M.: Anticipation effects of technological progress on capital accumulation: a vintage capital approach. J. Econ. Theory 126(1), 143–164 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Prskawetz, A., Tsachev, Ts., Veliov, V.M.: Optimal education in an age-structured model under changing labor demand and supply. Macroecon. Dyn. 16, 159–183 (2012)Google Scholar
  11. 11.
    Prskawetz, A., Veliov, V.M.: Age-specific dynamic labor demand and human capital investment. J. Econ. Dyn. Control 31(12), 3741–3777 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Aseev, S.M., Veliov, V.M.: Maximum principle for infinite-horizon optimal control problems with dominating discount. Dyn. Contin. Discrete Impuls. Syst. B 19, 43–63 (2012)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Carlson, D.A., Haurie, A.B., Leizarowitz, A.: Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Springer, Berlin (1991)zbMATHCrossRefGoogle Scholar
  14. 14.
    Faggian, S.: Applications of dynamic programming to economic problems with vintage capital. Dyn. Contin. Discrete Impuls. Syst. A 15, 527–553 (2008)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Faggian, S., Gozzi, F.: Dynamic programming for infinite horizon boundary control problems of PDE’s with age structure. J. Math. Econ. 46(4), 416–437 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Giardini Editori, Pisa (1994)Google Scholar
  17. 17.
    Brokate, M.: Pontryagin’s principle for control problems in age-dependent population dynamics. J. Math. Biol. 23, 75–101 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gripenberg, G., Londen, S.O., Staffans, O.: Volterra Integral and Functional Equations. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
  19. 19.
    Veliov, V.M.: Optimal control of heterogeneous systems: basic theory. J. Math. Anal. Appl. 346, 227–242 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Feichtinger, G., Veliov, V.M.: On a distributed control problem arising in dynamic optimization of a fixed-size population. SIAM J. Optim. 18, 980–1003 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Simon, C., Skritek, B., Veliov, V.M.: Optimal immigration age-patterns in populations of fixed size. J. Math. Anal. Appl. 405(1), 71–89 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Krastev, V.Y.: Arrow-type sufficient conditions for optimality of age-structured control problems. Cent. Eur. J. Math. 11(6), 1094–1111 (2013)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.ORCOS, Institute of Mathematical Methods in EconomicsVienna University of TechnologyViennaAustria

Personalised recommendations