Journal of Optimization Theory and Applications

, Volume 164, Issue 2, pp 455–478 | Cite as

Characterizing Efficiency on Infinite-dimensional Commodity Spaces with Ordering Cones Having Possibly Empty Interior

  • Fabián Flores-BazánEmail author
  • Fernando Flores-Bazán
  • Sigifredo Laengle


Some production models in finance require infinite-dimensional commodity spaces, where efficiency is defined in terms of an ordering cone having possibly empty interior. Since weak efficiency is more tractable than efficiency from a mathematical point of view, this paper characterizes the equality between efficiency and weak efficiency in infinite-dimensional spaces without further assumptions, like closedness or free disposability. This is obtained as an application of our main result that characterizes the solutions to a unified vector optimization problem in terms of its scalarization. Standard models as efficiency, weak efficiency (defined in terms of quasi-relative interior), weak strict efficiency, strict efficiency, or strong solutions are carefully described. In addition, we exhibit two particular instances and compute the efficient and weak efficient solution set in Lebesgue spaces.


Vector optimization Scalarization Efficiency Infinite-dimensional commodity space Quasi-relative interior 

Mathematics Subject Classication (2000)

90C26 90C29 90C30 90C46 



This research, for the first author, was supported in part by CONICYT-Chile through FONDECYT 112-0980 and BASAL projects, CMM, Universidad de Chile. Support by Ecos-Conicyt CE08-2010 and MATH-AmSud 13math-01 are also greatly acknowledged. The authors also wants to express their great gratitude to Nicolas Hadjisavvas for very stimulating discussions during the last stage of this final version.


  1. 1.
    Zame, William R.: Competitive equilibria in production economies with an infinite-dimensional commodity space. Econometrica 55, 1075–1108 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bonnisseau, J.-M., Crettez, B.: On the characterization of efficient production vectors. Econ. Theor. 31, 213–223 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bonnisseau, J.-M., Cornet, B.: Existence of equilibria when firms follows bounded losses pricing rules. J. Math. Econ. 17, 119–147 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 2. Springer, Berlin (1989)Google Scholar
  5. 5.
    Jahn, J.: Vector optimization. Theory, Applications and Extensions. Springer, Berlin (2004)zbMATHGoogle Scholar
  6. 6.
    Flores-Bazán, F., Hernández, E., Novo, V.: Characterizing efficiency without linear structure: a unified approach. J. Global Optim. 41(1), 43–60 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Flores-Bazán, F., Hernández, E.: A unified vector optimization problem: complete scalarizations and applications. Optimization 60, 1399–1419 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bot, R.I., Grad, S.M.: Duality for vector optimization via a general scalarization. Optimization 60, 1269–1290 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Durea, M., Dutta, J., Tammer, C.: Lagrange multipliers for \(\varepsilon \)-Pareto solutions in vector optimization with nonsolid cones in Banach spaces. J. Optim. Theory Appl. 145, 196–211 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Luenberger, D.G.: New optimality principles for economics efficiency and equilibrium. J. Optim. Theory Appl. 75, 221–264 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gerstewitz, C.H., Iwanow, E.: Dualit\(\ddot{\text{ a }}\)t f\(\ddot{\text{ u }}\)r nichtkonvexe Vektoroptimierungsprobleme. Wiss. Z. Tech. Hochsch. Ilmenau 31, 61–81 (1985)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Rubinov, A.M.: Sublinear operator and theirs applications. Rus. Math. Surveys 32, 113–175 (1977)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Rubinov, A.M., Gasimov, R.N.: Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a preorder relation. J. Global Optim. 29, 455–477 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Tammer, C., Zalinescu, C.: Lipschitz properties of the scalarization function and applications. Optimization 59, 305–319 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Göpfert, A., Riahi, H., Tammer, Ch., Zalinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics. Springer, New york (2003)Google Scholar
  22. 22.
    Chen, G-Y.; Huang, X.; Yang, X., “Vector optimization. Set-valued and variational analysis”. Lecture Notes in Economics and Mathematical Systems, 541. Springer-Verlag, Berlin, 2005.Google Scholar
  23. 23.
    Gutiérrez, C., Jiménez, B., Novo, V.: A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17, 688–710 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Gutiérrez, C., Jiménez, B., Novo, V.: Optimality conditions via scalarization for a new \(\varepsilon \)-efficiency concept in vector optimization problems. Eur. J. Oper. Res. 201, 11–22 (2010)CrossRefzbMATHGoogle Scholar
  25. 25.
    Gutiérrez, C., Jiménez, B., Novo, V.: Improvements sets and vector optimization. Eur. J. Oper. Res. 223, 304–311 (2012)CrossRefGoogle Scholar
  26. 26.
    Weidner, P.: On the characterization of efficient points by means of monotone functionals. Optimization 19, 53–69 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Borwein, J.M., Lewis, A.S.: Partially finite convex programming, Part I: quasi relative interiors and duality theory. Math. Program. A 57, 15–48 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Limber, M.A., Goodrich, R.K.: Quasi interiors, Lagrange multipliers, and \(L^p\) spectral estimation with lattice bounds. J. Optim. Theory Appl. 78, 143–161 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Grad, A.: Quasi-relative interior-type constraint qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints. J. Math. Anal. Appl. 361, 86–95 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Li, S.J., Yang, X.Q., Chen, G.Y.: Nonconvex vector optimization of set-valued mappings. J. Math. Anal. Appl. 283, 337–350 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Follmer, H., Schied, A.: Convex measures of risk and trading constraints. Financ. Stoch. 6, 429–447 (2002)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization. J. Math. Anal. Appl. 179, 537–546 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Drummond, L.D.G., Maculan, N., Svaiter, B.F.: On the choice of parameter for the weighting method in vector optimization. Math. Program. Ser. B 111, 201–216 (2008)CrossRefzbMATHGoogle Scholar
  34. 34.
    Chicco, M., Mignanego, F., Pusillo, L., Tijs, S.: Vector optimization problems via improvements sets. J. Optim. Theory Appl. 150, 516–529 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Flores-Bazán, F., Hernández, E.: Optimality conditions for a unified vector optimization problem with not necessarily preordering relations. J. Global Optim. 56, 299–325 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Breckner, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. A 122, 301–347 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Aliprantis, C.D., Brown, D.J., Burkinshaw, O.: Existence and optimality of competitive equilibria. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  39. 39.
    Flores-Bazán, F., Laengle, S., Loyola, G.: Characterizing the efficient points without closedness or free-disposability. Cent. Eur. J. Oper. Res. 21, 401–410 (2013)CrossRefGoogle Scholar
  40. 40.
    Debreu, G.: Theory of Value. Wiley, New York (1959)zbMATHGoogle Scholar
  41. 41.
    Magill, M., Quinzii, M.: Theory of incomplete markets, vol. 1. MIT Press, Cambridge (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fabián Flores-Bazán
    • 1
    Email author
  • Fernando Flores-Bazán
    • 2
  • Sigifredo Laengle
    • 3
  1. 1.Departamento de Ingeniería Matemática, CI²MAUniversidad de ConcepciónConcepciónChile
  2. 2.Departamento de Matemática, Facultad de CienciasUniversidad del Bío BíoConcepciónChile
  3. 3.Departamento de Control de GestiónUniversidad de ChileSantiago de ChileChile

Personalised recommendations