Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis

  • S. K. Zhu
  • S. J. LiEmail author


This paper is concerned with a unified duality theory for a constrained extremum problem. Following along with the image space analysis, a unified duality scheme for a constrained extremum problem is proposed by virtue of the class of regular weak separation functions in the image space. Some equivalent characterizations of the zero duality property are obtained under an appropriate assumption. Moreover, some necessary and sufficient conditions for the zero duality property are also established in terms of the perturbation function. In the accompanying paper, the Lagrange-type duality, Wolfe duality and Mond–Weir duality will be discussed as special duality schemes in a unified interpretation. Simultaneously, three practical classes of regular weak separation functions will be also considered.


Image space analysis Constrained extremum problem Separation function Lagrange-type duality Perturbation function 



The authors are indebted to Professor F. Giannessi for his helpful advice and valuable discussions, especially for providing references [3, 9, 13] and suggestions on the form of the generalized Lagrange function (5). They would also like to express their gratitude to two anonymous referees for their valuable comments and suggestions on the proof of Lemma 3.1. This research was supported by the National Natural Science Foundation of China (Grant: 11171362) and the Basic and Advanced Research Project of CQCSTC (Grant: cstc2013jcyjA00003).


  1. 1.
    Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, pp. 423–439. North-Holland, Amsterdam (1979) Google Scholar
  2. 2.
    Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Li, J., Feng, S.Q., Zhang, Z.: A unified approach for constrained extremum problems: Image space analysis. J. Optim. Theory Appl. 159, 69–92 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Giannessi, F.: Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions. Springer, New York (2005) Google Scholar
  5. 5.
    Giannessi, F.: Theorems of the alternative for multifunctions with applications to optimization: gengeral results. J. Optim. Theory Appl. 55, 233–256 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Rubinov, A.M., Uderzo, A.: On global optimality conditions via separation functions. J. Optim. Theory Appl. 109, 345–370 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Li, S.J., Xu, Y.D., Zhu, S.K.: Nonlinear separation approach to constrained extremum problems. J. Optim. Theory Appl. 154, 842–856 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Luo, H.Z., Mastroeni, G., Wu, H.X.: Separation approach for augmented Lagrangians in constrained nonconvex optimization. J. Optim. Theory Appl. 144, 275–290 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Luo, H.Z., Wu, H.X., Liu, J.Z.: Some results on augmented Lagrangians in constrained global optimization via image space analysis. J. Optim. Theory Appl. 159, 360–385 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Tardella, F.: On the image of a constrained extremum problem and some applications to the existence of a minimum. J. Optim. Theory Appl. 60, 93–104 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Giannessi, F., Mastroeni, G.: Separation of sets and Wolfe duality. J. Glob. Optim. 42, 401–412 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mastroeni, G.: Some applications of the image space analysis to the duality theory for constrained extremum problems. J. Glob. Optim. 46, 603–614 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Giannessi, F.: On the theory of Lagrangian duality. Optim. Lett. 1, 9–20 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Giannessi, F., Mastroeni, G., Yao, J.C.: On maximum and variational principles via image space analysis. Positivity 16, 405–427 (2012) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Pappalardo, M.: Image space approach to penalty methods. J. Optim. Theory Appl. 64, 141–152 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Mastroeni, G.: Nonlinear separation in the image space with applications to penalty methods. Appl. Anal. 91, 1901–1914 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Mastroeni, G., Pappalardo, M., Yen, N.D.: Image of a parametric optimization problem and continuity of the perturbation function. J. Optim. Theory Appl. 81, 193–202 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Dien, P.H., Mastroeni, G., Pappalardo, M., Quang, P.H.: Regularity conditions for constrained extremum problems via image space. J. Optim. Theory Appl. 80, 19–37 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, Mathematical Theories, pp. 153–215. Kluwer Academic, Dordrecht (2000) CrossRefGoogle Scholar
  20. 20.
    Mastroeni, G.: On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation. J. Glob. Optim. 53, 203–214 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Mastroeni, G.: Optimality conditions and image space analysis for vector optimization problems. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, Vector Optimization, vol. 1, pp. 169–220. Springer, Dordrecht (2012) CrossRefGoogle Scholar
  22. 22.
    Li, J., Huang, N.J.: Image space analysis for vector variational inequalities with matrix inequality constraints and applications. J. Optim. Theory Appl. 145, 459–477 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Mastroeni, G., Panicucci, B., Passacantando, M., Yao, J.C.: A separation approach to vector quasi-equilibrium problems: saddle point and gap functions. Taiwan. J. Math. 13, 657–673 (2009) zbMATHMathSciNetGoogle Scholar
  24. 24.
    Hestenes, M.R.: Multiplier and gradient methods. In: Zadeh, L.A., Neustadt, L.W., Balakrishnan, A.V. (eds.) Computing Methods in Optimization Problems. Academic Press, New York (1969) Google Scholar
  25. 25.
    Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization. Academic Press, New York (1972) Google Scholar
  27. 27.
    Rubinov, A.M., Glover, B.M., Yang, X.Q.: Decreasing functions with applications to penalization. SIAM J. Optim. 10, 289–313 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Yang, X.Q., Huang, X.X.: A nonlinear Lagrangian approach to constrained optimization problems. SIAM J. Optim. 14, 1119–1144 (2001) CrossRefGoogle Scholar
  29. 29.
    Rubinov, A.M., Huang, X.X., Yang, X.Q.: The zero duality gap property and lower semicontinuity of the perturbation function. Math. Oper. Res. 27, 775–791 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Wang, C.Y., Yang, X.Q., Yang, X.M.: Unified nonlinear Lagrangian approach to duality and optimal paths. J. Optim. Theory Appl. 135, 85–100 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Huang, X.X., Yang, X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998) CrossRefzbMATHGoogle Scholar
  33. 33.
    Rubinov, A.M., Yang, X.Q.: Lagrange-Type Functions in Constrained Non-convex Optimization. Kluwer Academic, Dordrecht (2003) CrossRefzbMATHGoogle Scholar
  34. 34.
    Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part II: Special duality schemes. J. Optim. Theory Appl. (2013). doi: 10.1007/s10957-013-0467-5 Google Scholar
  35. 35.
    Evtushenko, Y.G., Rubinov, A.M., Zhadan, V.G.: General Lagrange-type functions in constrained global optimization. I. Auxiliary functions and optimality conditions. Optim. Methods Softw. 16, 193–230 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Evtushenko, Y.G., Rubinov, A.M., Zhadan, V.G.: General Lagrange-type functions in constrained global optimization. II. Exact auxiliary functions. Optim. Methods Softw. 16, 231–256 (2001) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsChongqing UniversityChongqingChina

Personalised recommendations