Journal of Optimization Theory and Applications

, Volume 160, Issue 2, pp 470–482 | Cite as

Multi-Objective Integer Programming: An Improved Recursive Algorithm

  • Melih OzlenEmail author
  • Benjamin A. Burton
  • Cameron A. G. MacRae


This paper introduces an improved recursive algorithm to generate the set of all nondominated objective vectors for the Multi-Objective Integer Programming (MOIP) problem. We significantly improve the earlier recursive algorithm of Özlen and Azizoğlu by using the set of already solved subproblems and their solutions to avoid solving a large number of IPs. A numerical example is presented to explain the workings of the algorithm, and we conduct a series of computational experiments to show the savings that can be obtained. As our experiments show, the improvement becomes more significant as the problems grow larger in terms of the number of objectives.


Multiple objective programming Integer programming 



We are thankful to anonymous reviewers for their constructive comments that helped to improve this paper substantially. Dr. Marco Laumanns kindly sent us the code and problem instances of Laumanns et al. [12]. Dr. Özgur Özpeynirci kindly sent us their problem generator and instances from Özpeynirci and Köksalan [7]. Dr. Anthony Przybylski kindly sent us their problem instances from Przybylski et al. [14].

The second author is supported by the Australian Research Council under the Discovery Projects funding scheme (project DP1094516).


  1. 1.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005) zbMATHGoogle Scholar
  2. 2.
    Özlen, M., Azizoğlu, M.: Multi-objective integer programming: a general approach for generating all non-dominated solutions. Eur. J. Oper. Res. 199(1), 25–35 (2009) CrossRefzbMATHGoogle Scholar
  3. 3.
    Abbas, M., Chaabane, D.: Optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 174(2), 1140–1161 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Jorge, J.: An algorithm for optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 195(1), 98–103 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ozlen, M., Azizoğlu, M., Burton, B.A.: Optimising a nonlinear utility function in multi-objective integer programming. J. Glob. Optim. 56(1), 93–102 (2013) CrossRefzbMATHGoogle Scholar
  6. 6.
    Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS J. Comput. 22(3), 371–386 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Manag. Sci. 56(12), 2302–2315 (2010) CrossRefzbMATHGoogle Scholar
  8. 8.
    Benson, H.P., Sun, E.: Outcome space partition of the weight set in multiobjective linear programming. J. Optim. Theory Appl. 105(1), 17–36 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Benson, H.P., Sun, E.: A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program. Eur. J. Oper. Res. 139(1), 26–41 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Klein, D., Hannan, E.: An algorithm for the multiple objective integer linear programming problem. Eur. J. Oper. Res. 9(4), 378–385 (1982) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Sylva, J., Crema, A.: A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158(1), 46–55 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Laumanns, M., Thiele, L., Zitzler, E.: An adaptive scheme to generate the Pareto front based on the epsilon-constraint method. In: Branke, J., Deb, K., Miettinen, K., Steuer, R.E. (eds.) Practical Approaches to Multi-Objective Optimization, Dagstuhl Seminar Proceedings, vol. 04461. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl (2005) Google Scholar
  13. 13.
    Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 169(3), 932–942 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Przybylski, A., Gandibleux, X., Ehrgott, M.: A two-phase method for multi-objective integer programming and its application to the assignment problem with three objectives. Discrete Optim. 7(3), 149–165 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Burton, B., Ozlen, M.: Projective geometry and the outer approximation algorithm for multiobjective linear programming (2010). arXiv:1006.3085
  16. 16.
    Przybylski, A., Gandibleux, X., Ehrgott, M.: Computational results for four exact methods to solve the three-objective assignment problem. Lect. Notes Econ. Math. Syst. 618, 79–88 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Melih Ozlen
    • 1
    Email author
  • Benjamin A. Burton
    • 2
  • Cameron A. G. MacRae
    • 1
  1. 1.School of Mathematical and Geospatial SciencesRMIT UniversityMelbourneAustralia
  2. 2.School of Mathematics and PhysicsUniversity of QueenslandBrisbaneAustralia

Personalised recommendations