# Stochastic Differential Games in Insider Markets via Malliavin Calculus

Article

First Online:

- 392 Downloads
- 3 Citations

## Abstract

In this paper, we use techniques of Malliavin calculus and forward integration to present a general stochastic maximum principle for anticipating stochastic differential equations driven by a Lévy type of noise. We apply our result to study a general stochastic differential game problem of an insider.

## Keywords

Malliavin calculus Maximum principle Jump diffusion Stochastic control Insider information Stochastic differential game## Notes

### Acknowledgements

The authors are grateful to two anonymous referees and Professor Franco Giannessi for their helpful comments and suggestions.

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) /ERC grant agreement No. [228087].

## References

- 1.An, T., Øksendal, B., Okur, Y.: A Malliavin calculus approach to general stochastic differential games with partial information. In: Malliavin Calculus and Stochastic Analysis. Springer Proceedings in Mathematics & Statistics, vol. 34, pp. 489–510. Springer, Berlin (2013) CrossRefGoogle Scholar
- 2.Di Nunno, G., Menoukeu-Pamen, O., Øksendal, B., Proske, F.: A general maximum principle for anticipative stochastic control and applications to insider trading. In: Advanced Mathematical Methods for Finance, pp. 181–221. Springer, Berlin (2011) CrossRefGoogle Scholar
- 3.Ewald, C.O., Xiao, Y.: Information: price and impact on general welfare and optimal investment. An anticipating stochastic differential game model. Adv. in Appl. Probab.
**43**(1), 97–120 (2011) CrossRefzbMATHMathSciNetGoogle Scholar - 4.Øksendal, B., Zhang, T.: The Itô-Ventzell formula and forward stochastic differential equations driven by Poisson random measures. Osaka Journal of Mathematics
**44**(1), 207–230 (2007) MathSciNetGoogle Scholar - 5.Russo, F., Vallois, P.: Forward, backward and symmetric stochastic integration. Probability Theory and Related Fields
**97**, 403–421 (1993) CrossRefzbMATHMathSciNetGoogle Scholar - 6.Di Nunno, G., Meyer-Brandis, T., Øksendal, B., Proske, F.: Malliavin calculus and anticipative Itô formulae for Lévy processes. Inf. Dim. Anal. Quant. Probab.
**8**, 235–258 (2005) CrossRefzbMATHGoogle Scholar - 7.Ghomrasni, R., Menoukeu-Pamen, O.: An approximation of the generalized covariation process In: Anticipative Stochastic Calculus with Applications to Financial Markets. PhD thesis, pp. 17–44, University of the Witwatersrand (2009) Google Scholar
- 8.Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands. Probability Theory and Related Fields
**78**, 535–581 (1988) CrossRefzbMATHMathSciNetGoogle Scholar - 9.Russo, F., Vallois, P.: Stochastic calculus with respect to continuous finite variation processes. Stochastics and Stochastics Reports
**70**, 1–40 (2000) zbMATHMathSciNetGoogle Scholar - 10.Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance. Universitext. Springer, Birlin (2008) Google Scholar
- 11.Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (1995) CrossRefzbMATHGoogle Scholar
- 12.Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996) zbMATHGoogle Scholar
- 13.Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
- 14.Itô, K.: Generalized Poisson functionals. Probability Theory Related Fields
**77**, 1–28 (1988) CrossRefzbMATHGoogle Scholar - 15.Kohatsu-Higa, A., Sulem, A.: Utility maximization in an insider influenced market. Mathematical Finance
**16**(1), 153–179 (2006) CrossRefzbMATHMathSciNetGoogle Scholar - 16.Baghery, F., Øksendal, B.: A maximum principle for stochastic control with partial information. Stochastic Analysis and Applications
**25**, 705–717 (2007) CrossRefzbMATHMathSciNetGoogle Scholar - 17.Nualart, D., Üstünel, A., Zakai, E.: Some relations among classes of
*σ*-fields on wiener space. Probability Theory and Related Fields**85**, 119–129 (1990) CrossRefzbMATHMathSciNetGoogle Scholar - 18.Menoukeu-Pamen, O., Meyer-Brandis, T., Nilssen, T., Proske, F., Zhang, T.: A variational approach to the construction and Malliavin differentiability of strong solutions of SDEs. Math. Ann. (2013). doi: 10.1007/s00208-013-0916-3 zbMATHMathSciNetGoogle Scholar

## Copyright information

© Springer Science+Business Media New York 2013