Advertisement

Journal of Optimization Theory and Applications

, Volume 159, Issue 1, pp 125–137 | Cite as

A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds

  • G. C. Bento
  • J. X. Cruz Neto
Article

Abstract

In this paper, a subgradient-type method for solving nonsmooth multiobjective optimization problems on Riemannian manifolds is proposed and analyzed. This method extends, to the multicriteria case, the classical subgradient method for real-valued minimization proposed by Ferreira and Oliveira (J. Optim. Theory Appl. 97:93–104, 1998). The sequence generated by the method converges to a Pareto optimal point of the problem, provided that the sectional curvature of the manifold is nonnegative and the multicriteria function is convex.

Keywords

Pareto optimality Multiobjective optimization Subgradient method Quasi-Féjer convergence 

Notes

Acknowledgements

The authors would like to extend their gratitude toward anonymous referees whose suggestions helped us to improve the presentation of this paper. The first author was partially supported by CNPq Grant 471815/2012-8, Project CAPES-MES-CUBA 226/2012, PROCAD-nf-UFG/UnB/IMPA, and FAPEG/CNPq. The second author was partially supported by CNPq GRANT 301625-2008 and PRONEX-Optimization (FAPERJ/CNPq).

References

  1. 1.
    Gal, T., Hanne, T.: On the development and future aspects of vector optimization and MCDM. In: Cláco, J. (ed.) Multicriteria Analysis, pp. 130–145. Springer, Berlin (1997) CrossRefGoogle Scholar
  2. 2.
    White, D.J.: A bibliography on the applications of mathematical programming multiple objective methods. J. Oper. Res. Soc. 41, 669–691 (1990) zbMATHGoogle Scholar
  3. 3.
    Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mäkelä, M.M., Männikkö, T.: Numerical solution of nonsmooth optimal control problems with an application to the continuous casting process. Adv. Math. Sci. Appl. 4, 491–515 (1994) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Miettinen, K., Mäkelä, M.M.: An interactive method for nonsmooth multiobjective optimization with an application to optimal control. Optim. Methods Softw. 2, 31–44 (1993) CrossRefGoogle Scholar
  8. 8.
    Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Udriste, C.: Convex Functions and Optimization Algorithms on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994) CrossRefGoogle Scholar
  10. 10.
    Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491–1498 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Attouch, H., Bolte, J., Redont, P., Teboulle, M.: Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization. Optimization 53(5–6), 435–454 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rapcsák, T.: Local convexity on smooth manifolds. J. Optim. Theory Appl. 127(1), 165–176 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Azagra, D., Ferrera, J., López-Mesas, M.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31(1), 133–151 (2005) CrossRefzbMATHGoogle Scholar
  16. 16.
    Cruz Neto, J.X., Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Glob. Optim. 35, 53–69 (2006) CrossRefzbMATHGoogle Scholar
  17. 17.
    Ferreira, O.P.: Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313, 587–597 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, J.H., Li, C.: Uniqueness of the singular points of vector fields on Riemannian manifolds under the γ-condition. J. Complex. 22(4), 533–548 (2006) CrossRefzbMATHGoogle Scholar
  19. 19.
    Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal. 26(2), 228–251 (2006) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ledyaev, Yu.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8, 197–226 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008) CrossRefzbMATHGoogle Scholar
  23. 23.
    Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341(1), 467–477 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Barani, A., Pouryayevali, M.R.: Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70(5), 1850–1861 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Wang, J.H., Huang, S.C., Li, C.: Extended Newton’s algorithm for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13, 633–656 (2009) MathSciNetzbMATHGoogle Scholar
  29. 29.
    Wang, J.H., Lopez, G., Martin-Marquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tang, G., Huang, N.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Glob. Optim. 54(3), 493–509 (2011) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, J.H., Yao, J.C., Li, C.: Gauss–Newton method for convex composite optimizations on Riemannian manifolds. J. Glob. Optim. 53(1), 5–28 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bento, G.C., Melo, J.G.: A subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ferreira, O.P., Silva, R.C.M.: Local convergence of Newton’s method under majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32, 1696–1713 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3(2), 89–100 (1998) zbMATHGoogle Scholar
  39. 39.
    Shor, N.Z.: Minimization Algorithms for Non-differentiable Function. Springer, Berlin (1985) CrossRefGoogle Scholar
  40. 40.
    Polyak, B.T.: Minimization of nonsmooth functionals. USSR Comput. Math. Math. Phys. 9, 14–29 (1969) CrossRefGoogle Scholar
  41. 41.
    Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81(1), 23–35 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Bertsekas, D.P., Nedic, A.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 56(1), 109–138 (2001) MathSciNetGoogle Scholar
  43. 43.
    Burachik, R.S., Iusem, A.N., Melo, J.G.: A primal dual modified subgradient algorithm with sharp Lagrangian. J. Glob. Optim. 46(3), 347–361 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992) CrossRefzbMATHGoogle Scholar
  46. 46.
    Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996) zbMATHGoogle Scholar
  47. 47.
    Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balk. J. Geom. Appl. 5(1), 69–79 (2000) zbMATHGoogle Scholar
  48. 48.
    Luc, T.D.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989) CrossRefGoogle Scholar
  49. 49.
    Fliege, J., Grãna Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Universidade Federal de GoiásGoiâniaBrazil
  2. 2.Universidade Federal PiauíTeresinaBrazil

Personalised recommendations