Journal of Optimization Theory and Applications

, Volume 159, Issue 1, pp 125–137 | Cite as

A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds



In this paper, a subgradient-type method for solving nonsmooth multiobjective optimization problems on Riemannian manifolds is proposed and analyzed. This method extends, to the multicriteria case, the classical subgradient method for real-valued minimization proposed by Ferreira and Oliveira (J. Optim. Theory Appl. 97:93–104, 1998). The sequence generated by the method converges to a Pareto optimal point of the problem, provided that the sectional curvature of the manifold is nonnegative and the multicriteria function is convex.


Pareto optimality Multiobjective optimization Subgradient method Quasi-Féjer convergence 



The authors would like to extend their gratitude toward anonymous referees whose suggestions helped us to improve the presentation of this paper. The first author was partially supported by CNPq Grant 471815/2012-8, Project CAPES-MES-CUBA 226/2012, PROCAD-nf-UFG/UnB/IMPA, and FAPEG/CNPq. The second author was partially supported by CNPq GRANT 301625-2008 and PRONEX-Optimization (FAPERJ/CNPq).


  1. 1.
    Gal, T., Hanne, T.: On the development and future aspects of vector optimization and MCDM. In: Cláco, J. (ed.) Multicriteria Analysis, pp. 130–145. Springer, Berlin (1997) CrossRefGoogle Scholar
  2. 2.
    White, D.J.: A bibliography on the applications of mathematical programming multiple objective methods. J. Oper. Res. Soc. 41, 669–691 (1990) MATHGoogle Scholar
  3. 3.
    Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Mäkelä, M.M., Männikkö, T.: Numerical solution of nonsmooth optimal control problems with an application to the continuous casting process. Adv. Math. Sci. Appl. 4, 491–515 (1994) MathSciNetMATHGoogle Scholar
  7. 7.
    Miettinen, K., Mäkelä, M.M.: An interactive method for nonsmooth multiobjective optimization with an application to optimal control. Optim. Methods Softw. 2, 31–44 (1993) CrossRefGoogle Scholar
  8. 8.
    Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Udriste, C.: Convex Functions and Optimization Algorithms on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994) CrossRefGoogle Scholar
  10. 10.
    Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491–1498 (2003) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Attouch, H., Bolte, J., Redont, P., Teboulle, M.: Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization. Optimization 53(5–6), 435–454 (2004) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rapcsák, T.: Local convexity on smooth manifolds. J. Optim. Theory Appl. 127(1), 165–176 (2005) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Azagra, D., Ferrera, J., López-Mesas, M.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31(1), 133–151 (2005) CrossRefMATHGoogle Scholar
  16. 16.
    Cruz Neto, J.X., Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Glob. Optim. 35, 53–69 (2006) CrossRefMATHGoogle Scholar
  17. 17.
    Ferreira, O.P.: Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313, 587–597 (2006) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wang, J.H., Li, C.: Uniqueness of the singular points of vector fields on Riemannian manifolds under the γ-condition. J. Complex. 22(4), 533–548 (2006) CrossRefMATHGoogle Scholar
  19. 19.
    Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal. 26(2), 228–251 (2006) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ledyaev, Yu.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8, 197–226 (2008) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008) CrossRefMATHGoogle Scholar
  23. 23.
    Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341(1), 467–477 (2008) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Barani, A., Pouryayevali, M.R.: Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70(5), 1850–1861 (2009) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009) MathSciNetMATHGoogle Scholar
  28. 28.
    Wang, J.H., Huang, S.C., Li, C.: Extended Newton’s algorithm for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13, 633–656 (2009) MathSciNetMATHGoogle Scholar
  29. 29.
    Wang, J.H., Lopez, G., Martin-Marquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010) MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010) MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Tang, G., Huang, N.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Glob. Optim. 54(3), 493–509 (2011) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, J.H., Yao, J.C., Li, C.: Gauss–Newton method for convex composite optimizations on Riemannian manifolds. J. Glob. Optim. 53(1), 5–28 (2012) MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011) MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Bento, G.C., Melo, J.G.: A subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012) MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012) MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Ferreira, O.P., Silva, R.C.M.: Local convergence of Newton’s method under majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32, 1696–1713 (2012) MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3(2), 89–100 (1998) MATHGoogle Scholar
  39. 39.
    Shor, N.Z.: Minimization Algorithms for Non-differentiable Function. Springer, Berlin (1985) CrossRefGoogle Scholar
  40. 40.
    Polyak, B.T.: Minimization of nonsmooth functionals. USSR Comput. Math. Math. Phys. 9, 14–29 (1969) CrossRefGoogle Scholar
  41. 41.
    Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81(1), 23–35 (1998) MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Bertsekas, D.P., Nedic, A.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 56(1), 109–138 (2001) MathSciNetGoogle Scholar
  43. 43.
    Burachik, R.S., Iusem, A.N., Melo, J.G.: A primal dual modified subgradient algorithm with sharp Lagrangian. J. Glob. Optim. 46(3), 347–361 (2010) MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998) MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992) CrossRefMATHGoogle Scholar
  46. 46.
    Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996) MATHGoogle Scholar
  47. 47.
    Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balk. J. Geom. Appl. 5(1), 69–79 (2000) MATHGoogle Scholar
  48. 48.
    Luc, T.D.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989) CrossRefGoogle Scholar
  49. 49.
    Fliege, J., Grãna Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Universidade Federal de GoiásGoiâniaBrazil
  2. 2.Universidade Federal PiauíTeresinaBrazil

Personalised recommendations