Advertisement

Journal of Optimization Theory and Applications

, Volume 162, Issue 2, pp 559–576 | Cite as

The Pascoletti–Serafini Scalarization Scheme and Linear Vector Optimization

  • N. T. T. Huong
  • N. D. Yen
Article

Abstract

The Pascoletti–Serafini scalarization scheme for general vector optimization problems is studied. It is specified to linear vector optimization to give minimal representation formulae for the weakly efficient solution set and the efficient solution set. Several facts on connectedness of the solution sets of Pascoletti–Serafini’s scalar auxiliary problems, both for linear vector optimization and for nonlinear vector optimization, are established.

Keywords

Vector optimization Linear vector optimization The Pascoletti–Serafini scalarization Representation formula Solution connectedness 

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2011.01. The first author was supported in part by Department of Information Technology, Le Qui Don University. The authors are indebted to the three anonymous referees for their detailed remarks and valuable suggestions. The counterexample given in Remark 2.1 is due to one of the referees. We would like also to thank Mr. Pham Duy Khanh for a useful discussion on the subject.

References

  1. 1.
    Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989) CrossRefGoogle Scholar
  2. 2.
    Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities: A Qualitative Study. Springer, New York (2005) Google Scholar
  3. 3.
    Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Helbig, S.: An interactive algorithm for nonlinear vector optimization. Appl. Math. Optim. 22, 147–151 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Helbig, S.: An algorithm for quadratic vector optimization problems. Z. Angew. Math. Mech. 70, T751–T753 (1990) MathSciNetGoogle Scholar
  6. 6.
    Helbig, S.: On a constructive approximation of the efficient outcomes in bicriterion vector optimization. J. Glob. Optim. 5, 35–48 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Sterna-Karwat, A.: Continuous dependence of solutions on a parameter in a scalarization method. J. Optim. Theory Appl. 55, 417–434 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Sterna-Karwat, A.: Lipschitz and differentiable dependence of solutions on a parameter in a scalarization method. J. Aust. Math. Soc. A 42, 353–364 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19, 1694–1718 (2008) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Eichfelder, G.: Multiobjective bilevel optimization. Math. Program., Ser. A 123, 419–449 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008) CrossRefzbMATHGoogle Scholar
  13. 13.
    Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.-L. (eds.) Variational Inequality and Complementarity Problems, pp. 151–186. Wiley, New York (1980) Google Scholar
  14. 14.
    Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria. Kluwer, Dordrecht (2000) zbMATHGoogle Scholar
  15. 15.
    Yen, N.D., Yao, J.-C.: Monotone affine vector variational inequalities. Optimization 60, 53–68 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yen, N.D.: Linear fractional and convex quadratic vector optimization problems. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, pp. 297–328. Springer, Berlin (2012) CrossRefGoogle Scholar
  17. 17.
    Gong, X.H.: Efficiency and Henig efficiency for vector equilibrium problems. J. Optim. Theory Appl. 108, 139–154 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gong, X.H.: Connectedness of the solution sets and scalarization for vector equilibrium problems. J. Optim. Theory Appl. 133, 151–161 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sach, P.H., Minh, N.B.: Continuity of solution mappings in some parametric non-weak Ky Fan inequalities. J. Glob. Optim. (2012). doi: 10.1007/s10898-012-0015-0 Google Scholar
  20. 20.
    Sach, P.H., Tuan, L.A.: New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems. J. Optim. Theory Appl. (2012). doi: 10.1007/s10957-012-0105-7 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Information TechnologyLe Qui Don UniversityHanoiVietnam
  2. 2.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations