Journal of Optimization Theory and Applications

, Volume 155, Issue 1, pp 215–226 | Cite as

Best Proximity Point Theorems for Generalized Cyclic Contractions in Ordered Metric Spaces

  • Chirasak Mongkolkeha
  • Poom Kumam


In this paper, we generalized a cyclic contraction on a partially ordered complete metric space. We prove some fixed point theorems as well as some theorems on the existence of best proximity points. Our results improve and extend some recent results in the previous work.


Fixed point Best proximity point Property UC Generalized cyclic contraction 


  1. 1.
    Arvanitakis, A.D.: A proof of the generalized Banach contraction conjecture. Proc. Am. Math. Soc. 131, 3647–3656 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Choudhury, B.S., Das, K.P.: A new contraction principle in Menger spaces. Acta Math. Sin. 24, 1379–1386 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Kirk, W.A., Srinivasan, P.S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory Appl. 4, 79–89 (2003) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283–293 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Suzuki, T., Kikkawa, M., Vetro, C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Nieto, J.J., Rodriguez-Lopez, R.: Contractive mapping theorems in partially ordered sets and applications of ordinary differential equations. Order 22, 223–239 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Abkar, A., Gabeleh, M.: Best proximity point for cyclic mapping in ordered metric space. J. Optim. Theory Appl. (2011). doi: 10.1007/s10957-011-9818-2

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations