Journal of Optimization Theory and Applications

, Volume 155, Issue 1, pp 215–226 | Cite as

Best Proximity Point Theorems for Generalized Cyclic Contractions in Ordered Metric Spaces

Article

Abstract

In this paper, we generalized a cyclic contraction on a partially ordered complete metric space. We prove some fixed point theorems as well as some theorems on the existence of best proximity points. Our results improve and extend some recent results in the previous work.

Keywords

Fixed point Best proximity point Property UC Generalized cyclic contraction 

References

  1. 1.
    Arvanitakis, A.D.: A proof of the generalized Banach contraction conjecture. Proc. Am. Math. Soc. 131, 3647–3656 (2003) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Choudhury, B.S., Das, K.P.: A new contraction principle in Menger spaces. Acta Math. Sin. 24, 1379–1386 (2008) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kirk, W.A., Srinivasan, P.S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory Appl. 4, 79–89 (2003) MathSciNetMATHGoogle Scholar
  4. 4.
    Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283–293 (2005) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Suzuki, T., Kikkawa, M., Vetro, C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Nieto, J.J., Rodriguez-Lopez, R.: Contractive mapping theorems in partially ordered sets and applications of ordinary differential equations. Order 22, 223–239 (2005) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Abkar, A., Gabeleh, M.: Best proximity point for cyclic mapping in ordered metric space. J. Optim. Theory Appl. (2011). doi:10.1007/s10957-011-9818-2

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations