Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare

  • Fook Wai Kong
  • Polyxeni-Margarita Kleniati
  • Berç Rustem


In this paper, we propose an algorithm which computes the correlated equilibrium with global-optimal (i.e., maximum) expected social welfare for single stage polynomial games. We first derive tractable primal/dual semidefinite programming (SDP) relaxations for an infinite-dimensional formulation of correlated equilibria. We give an asymptotic convergence proof, which ensures solving the sequence of relaxations leads to solutions that converge to the correlated equilibrium with the highest expected social welfare. Finally, we give a dedicated sequential SDP algorithm and demonstrate it in a wireless application with numerical results.


Correlated equilibria Noncooperative game Semidefinite programming Sum of squares Polynomial optimization Communication networks 


  1. 1.
    Lasaulce, S., Debbah, M., Altman, E.: Methodologies for analyzing equilibria in wireless games. IEEE Signal Process. Mag. 26(5), 41–52 (2009) CrossRefGoogle Scholar
  2. 2.
    Yu, W.: Competition and cooperation in multiuser communication environments. Ph.D. thesis, Stanford University (2002) Google Scholar
  3. 3.
    Popescu, O., Popescu, D.C., Rose, C.: Simultaneous water filling in mutually interfering systems. IEEE Trans. Wirel. Commun. 6(3), 1102–1113 (2007) CrossRefGoogle Scholar
  4. 4.
    Scutari, G., Palomar, D.P., Barbarossa, S.: The MIMO iterative waterfilling algorithm. IEEE Trans. Signal Process. 57(5), 1917–1935 (2009) CrossRefGoogle Scholar
  5. 5.
    Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1(1), 67–96 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Aumann, R.J.: Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55(1), 1–18 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hart, S., Schmeidler, D.: Existence of correlated equilibria. Math. Oper. Res. 14(1), 18–25 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Stoltz, G., Lugosi, G.: Learning correlated equilibria in games with compact sets of strategies. Games Econ. Behav. 59(1), 187–208 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kakade, S., Kearns, M., Langford, J., Ortiz, L.: Correlated equilibria in graphical games. In: Proceedings of the 4th ACM Conference on Electronic Commerce (EC), New York, USA, pp. 42–47 (2003) CrossRefGoogle Scholar
  10. 10.
    Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM 55(3), 1–29 (2008) MathSciNetGoogle Scholar
  11. 11.
    Ortiz, L., Schapire, R., Kakade, S.: Maximum entropy correlated equilibria. In: Proceedings of the 11th International Conference on AI and Stats., San Juan, Puerto Rico, pp. 347–354 (2007) Google Scholar
  12. 12.
    Krishnamurthy, V., Maskery, M., Yin, G.: Decentralized adaptive filtering algorithms for sensor activation in an unattended ground sensor network. IEEE Trans. Signal Process. 56(12), 6086–6101 (2008) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Belmega, E.V., Lasaulce, S., Debbah, M., Hjørungnes, A.: Learning distributed power allocation policies in MIMO channels. In: Proceedings of the 18th European Signal Processing Conference (EUSIPCO), Aalborg, Denmark (2010), Invited paper Google Scholar
  14. 14.
    Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Stein, N.D., Ozdaglar, A., Parrilo, P.: Computing correlated equilibria of polynomial games via adaptive discretization. In: Proceedings of the 47th IEEE Conference on Decision and Control (CDC), Cancun, Mexico, pp. 4474–4478 (2008) Google Scholar
  16. 16.
    Stein, N.D., Parrilo, P.A., Ozdaglar, A.: Correlated equilibria in continuous games: Characterization and computation. Games Econ. Behav. 71(2), 436–455 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Curto, R., Fialkow, L.: The truncated complex K-moment problem. Trans. Am. Math. Soc. 352(6), 2825–2855 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) The IMA Volumes in Math. and Its Appln. Emerging Applications of Algebraic Geometry, vol. 149, pp. 157–270. Springer, Berlin (2009) Google Scholar
  19. 19.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Scherer, C.W., Hol, C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program. 107(1), 189–211 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Yu, W., Rhee, W., Boyd, S., Cioffi, J.M.: Iterative water-filling for Gaussian vector multiple-access channels. IEEE Trans. Inf. Theory 50(1), 145–152 (2004) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fook Wai Kong
    • 1
  • Polyxeni-Margarita Kleniati
    • 2
  • Berç Rustem
    • 1
  1. 1.Department of Computing, South Kensington CampusImperial CollegeLondonUK
  2. 2.Centre for Process Systems Engineering, South Kensington CampusImperial CollegeLondonUK

Personalised recommendations