Advertisement

Hahn Difference Operator and Associated Jackson–Nörlund Integrals

  • M. H. Annaby
  • A. E. Hamza
  • K. A. Aldwoah
Article

Abstract

This paper is devoted for a rigorous investigation of Hahn’s difference operator and the associated calculus. Hahn’s difference operator generalizes both the difference operator and Jackson’s q-difference operator. Unlike these two operators, the calculus associated with Hahn’s difference operator receives no attention. In particular, its right inverse has not been constructed before. We aim to establish a calculus of differences based on Hahn’s difference operator. We construct a right inverse of Hahn’s operator and study some of its properties. This inverse also generalizes both Nörlund sums and the Jackson q-integrals. We also define families of corresponding exponential and trigonometric functions which satisfy first and second order difference equations, respectively.

Keywords

Hahn’s operator Difference equations q-Difference equations Nörlund sums Jackson q-integral 

References

  1. 1.
    Hahn, W.: Über Orthogonalpolynome, die q-Differenzenlgleichungen genügen. Math. Nachr. 2, 4–34 (1949) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Álvarez-Nodarse, R.: On characterization of classical polynomials. J. Comput. Appl. Math. 196, 320–337 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Costas-Santos, R.S., Marcellán, F.: Second structure Relation for q-semiclassical polynomials of the Hahn Tableau. J. Math. Anal. Appl. 329, 206–228 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Foupouagnigni, M.: Laguerre–Hahn orthogonal polynomials with respect to the Hahn operator: fourth-order difference equation for the rth associated and the Laguerre–Freud equations for the recurrence coefficients. Ph.D. Thesis, Université Nationale du Bénin, Bénin (1998) Google Scholar
  5. 5.
    Kwon, K.H., Lee, D.W., Park, S.B., Yoo, B.H.: Hahn class orthogonal polynomials. Kyungpook Math. J. 38, 259–281 (1998) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  7. 7.
    Fort, T.: Finite Differences and Difference Equations in Real Domain. Oxford University Press, Oxford (1948) zbMATHGoogle Scholar
  8. 8.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004) zbMATHCrossRefGoogle Scholar
  9. 9.
    Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia Math. Appl., vol. 98. Cambridge University Press, Cambridge (2005) zbMATHGoogle Scholar
  10. 10.
    Jordan, C.: Calculus of Finite Differences. Chelsea, New York (1965) zbMATHGoogle Scholar
  11. 11.
    Nörlund, N.: Vorlesungen über Differencenrechnung. Springer, Berlin (1924) Google Scholar
  12. 12.
    Abu-Risha, M.H., Annaby, M.H., Ismail, M.E.H., Mansour, Z.S.: Linear q-difference equations. Z. Anal. Anwend. 26, 481–494 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Abu-Risha, M.H., Annaby, M.H., Ismail, M.E.H., Mansour, Z.S.: Existence and uniqueness theorems of q-difference equations. Submitted (2005) Google Scholar
  14. 14.
    Aldwoah, K.A.: Generalized time scales and associated difference equations. Ph.D. Thesis, Cairo University (2009) Google Scholar
  15. 15.
    Al-Salam, W.A.: q-Analogues of Cauchy’s formulas. Proc. Am. Math. Soc. 17, 616–621 (1966) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Annaby, M.H.: q-Type sampling theorems. Results Math. 44, 214–225 (2003) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Annaby, M.H., Mansour, Z.S.: On zeros of second and third Jackson q-Bessel functions and their q-integral transforms. Math. Proc. Camb. Philos. Soc. 147, 47–67 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Annaby, M.H., Mansour, Z.S.: q-Taylor and interpolation series for Jackson q-difference operator. J. Math. Anal. Appl. 344(1), 472–483 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Annaby, M.H., Mansour, Z.S.: Basic Sturm Liouville problems. J. Phys. A, Math. Gen. 38, 3775–3797 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Carmichael, R.D.: Linear difference equations and their analytic solutions. Trans. Am. Math. Soc. 12, 99–134 (1911) zbMATHCrossRefGoogle Scholar
  21. 21.
    Carmichael, R.D.: On the theory of linear difference equations. Am. J. Math. 35, 163–182 (1913) zbMATHCrossRefGoogle Scholar
  22. 22.
    Jackson, F.H.: Basic integration. Quart. J. Math. (Oxford) 2, 1–16 (1951) zbMATHCrossRefGoogle Scholar
  23. 23.
    Jackson, F.H.: On q-definite integrals. Pure Appl. Math. Q. 41, 193–203 (1910) zbMATHGoogle Scholar
  24. 24.
    Jackson, F.H.: On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253–281 (1908) Google Scholar
  25. 25.
    Koornwinder, T.H.: Compact quantum groups and q-special functions. In: Representations of Lie Groups and Quantum Groups. Pitman Res. Notes Math. Ser, vol. 311, pp. 46–128. Longman Sci. Tech (1994) Google Scholar
  26. 26.
    Koornwinder, T.H.: Special functions and q-commuting variables. In: Ismail, M.E.H., Masson, D.R., Rahman, M. (eds.) Special Functions, q-Series and Related Topics. Fields Institute Communications, vol. 14, pp. 131–166. Am. Math. Soc., Providence (1997) Google Scholar
  27. 27.
    Koornwinder, T.H.: Some simple applications and variants of the q-binomial formula. http://www.science.uva.nl/pub/mathematics/reports/Analysis/koornwinder/qbinomial.ps (1999)
  28. 28.
    Matsuo, A.: Jackson integrals of Jordan–Pochhammer type and quantum Knizhnik–Zamolodchikov equations. Commun. Math. Phys. 151, 263–273 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Pólya, G., Alexanderson, G.L.: Gaussian binomial coefficients. Elem. Math. 26, 102–109 (1971) MathSciNetzbMATHGoogle Scholar
  30. 30.
    Brito da Cruz, A.M.C., Martins, N., Torres, D.F.M.: Higher-order Hahn’s quantum variational calculus. Nonlinear Anal., Theory Methods Appl. doi: 10.1016/j.na.2011.01.0 (2011) Google Scholar
  31. 31.
    Malinowska, A.B. Torres, D.F.M.: The Hahn quantum variational calculus. J. Optim. Theory Appl. 147, 419–442 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Hahn, W.: Ein Beitrag zur Theorie der Orthogonalpolynome. Monatshefte Math. 95, 19–24 (1983) zbMATHCrossRefGoogle Scholar
  33. 33.
    Bryc, W., Ismail, M.: Approximation operators, exponential, q-exponential, and free exponential families. arXiv:math.ST/0512224 (2005)
  34. 34.
    Cigler, J.: Operatormethoden für q-Identitäten II: q-Laguerre Polynome. Monatshefte Math. 91, 105–117 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Lesky, P.A.: Eine Charakterisierung der klassischen kontinuierlichen-, Diskreten und q-Orthogonalpolynome. Shaker, Aachen (2005) Google Scholar
  36. 36.
    Petronilho, J.: Generic formulas for the values at the singular points of some special monic classical H q,ω-orthogonal polynomials. J. Comput. Appl. Math. 205, 314–324 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Bird, M.T.: On generalizations of sum formulas of the Euler–Maclaurin type. Am. J. Math. 58, 487–503 (1936) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Birkhoff, G.D.: General theory of linear difference equations. Trans. Am. Math. Soc. 12, 243–284 (1911) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Jagerman, D.L.: Difference Equations with Applications to Queues. Marcel Dekker, New York (2000) zbMATHCrossRefGoogle Scholar
  40. 40.
    Moak, D.S.: The q-analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81, 20–47 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Bohner, M., Peterson, A.: Advanced in Dynamic Equations on Time Scales. Birkhäuser, Basel (2003) CrossRefGoogle Scholar
  42. 42.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Basel (2001) zbMATHGoogle Scholar
  43. 43.
    Hilger, S.: Special functions, Laplace and Fourier transform on measure chains. Dyn. Syst. Appl. 8, 471–488 (1999). Special Issue on “Discrete and Continuous Hamiltonian Systems”, edited by R.P. Agarwal and M. Bohner MathSciNetzbMATHGoogle Scholar
  44. 44.
    Hilger, S.: Differential and difference calculus-unified. Nonlinear Anal. 30, 2683–2694 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics and PhysicsQatar UniversityDohaQatar
  2. 2.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt
  3. 3.Department of Mathematics, Faculty of ScienceJazan UniversityJazanSaudi Arabia

Personalised recommendations