Journal of Optimization Theory and Applications

, Volume 158, Issue 2, pp 615–625 | Cite as

Proximal Weakly Contractive and Proximal Nonexpansive Non-self-Mappings in Metric and Banach Spaces

Article

Abstract

In this work, we consider two classes of non-self-mappings, which are called proximal weakly contractive and proximal nonexpansive mappings, and study the existence of solutions of a minimization problem. Existence results of best proximity points for these two classes of non-self-mappings in metric and Banach spaces are also obtained.

Keywords

Proximal weakly contractive Proximal nonexpansive Best proximity point P-property 

Notes

Acknowledgements

The author thanks anonymous referees and the handling editor, professor Franco Giannessi, for their helpful remarks and suggestions that allowed him to improve the original presentation.

References

  1. 1.
    Fan, K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 122, 234–240 (1969) CrossRefGoogle Scholar
  2. 2.
    Abkar, A., Gabeleh, M.: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261–7268 (2011) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Al-Thagafi, M.A., Shahzad, N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665–3671 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Eldred, A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Derafshpour, M., Rezapour, S., Shahzad, N.: Best proximity points of cyclic φ-contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193–202 (2011) MathSciNetMATHGoogle Scholar
  6. 6.
    Di Bari, C., Suzuki, T., Vetro, C.: Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Anal. 69, 3790–3794 (2008) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium problems: nonsmooth optimization and variational inequality models, Nonconvex Optim. Appl., 58. doi:10.1007/b101835 (2004)
  8. 8.
    Mongkolkeha, C., Kumam, P.: Best proximity point theorems for generalized cyclic contractions in ordered metric spaces, J. Optim. Theory Appl. doi:10.1007/s10957-012-9991-y (2012, in press) MathSciNetGoogle Scholar
  9. 9.
    Mongkolkeha, C., Kumam, P.: Some common best proximity points for proximity commuting mappings, Optim. Lett. doi:10.1007/s11590-012-0525-1 (2012, in press) Google Scholar
  10. 10.
    Sintunavarat, S., Kumam, P.: Coupled best proximity point theorem in metric spaces, Fixed Point Theory Appl. doi:10.1186/1687-1812-2012-93 (2012) Google Scholar
  11. 11.
    Suzuki, T., Kikkawa, M., Vetro, C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Sankar Raj, V.: A best proximity point theorem for weakly contractive non-self mappings. Nonlinear Anal. 74, 4804–4808 (2011) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Abkar, A., Gabeleh, M.: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, 298–305 (2012) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Espínola, R.: A new approach to relatively nonexpansive mappings. Proc. Am. Math. Soc. 136, 1987–1996 (2008) MATHCrossRefGoogle Scholar
  15. 15.
    Alber, Ya.I., Guerre-Delabriere, S.: Principles of weakly contractive maps in Hilbert spaces, new results in operator theory. In: Gohberg, I., Lyubich, Yu (eds.) Advanced and Appl., vol. 98, pp. 7–22. Birkhauser, Basel (1997) Google Scholar
  16. 16.
    Sadiq Basha, S.: Best proximity points: optimal solutions. J. Optim. Theory Appl. 151, 210–216 (2011) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sadiq Basha, S.: Best proximity point theorems. J. Approx. Theory 163, 1772–1781 (2011) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Abkar, A., Gabeleh, M.: Best Proximity Points of Non-self mappings, Topology doi:10.1007/s11750-012-0255-7 (2012, in press) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsAyatollah Boroujerdi UniversityBoroujerdIran

Personalised recommendations