Journal of Optimization Theory and Applications

, Volume 158, Issue 2, pp 521–553 | Cite as

Optimal Synthesis for the Minimum Time Control Problems of Fed-Batch Bioprocesses for Growth Functions with Two Maxima

Article

Abstract

We address the problem of finding an optimal feedback control for feeding a fed-batch bioreactor with one species and one substrate from a given initial condition to a given target value in a minimal amount of time. Recently, the optimal synthesis (optimal feeding strategy) has been obtained in systems in which the microorganisms involved are represented by increasing growth functions or growth functions with one maxima, with either Monod or Haldane functions, respectively (widely used in bioprocesses modeling). In the present work, we allow impulsive controls corresponding to instantaneous dilutions, and we assume that the growth function of the microorganism present in the process has exactly two local maxima. This problem has been tackled from a numerical point of view without impulsive controls. In this article, we introduce two singular arc feeding strategies, and we define explicit regions of initial conditions in which the optimal strategy is either the first singular arc strategy or the second strategy.

Keywords

Optimal control Minimal time problem Impulsive control Pontryagin maximum principle Bioreactor 

References

  1. 1.
    Lee, J., Lee, S.Y., Park, S., Middelberg, P.J.: Control of fed-batch fermentations. Biotechnol. Adv. 17(11), 29–48 (1999) CrossRefGoogle Scholar
  2. 2.
    Hong, J.: Optimal substrate feeding policy for fed batch fermentation with substrate and product inhibition kinetics. Biotechnol. Bioeng. 28, 1421–1431 (1986) CrossRefGoogle Scholar
  3. 3.
    Liu, C.: Optimal control for nonlinear dynamical system of microbial fed-batch culture. J. Comput. Appl. Math. 232(2), 252–261 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Moreno, J.: Optimal time control of bioreactors for the wastewater treatment. Opt. Control Appl. Methods 20(3), 145–164 (1999) CrossRefGoogle Scholar
  5. 5.
    Miele, A.: Application of Green’s theorem to the extremization of linear integrals. In: Symp. on Vehicle Systems Optimization. Garden City, New York (1961) Google Scholar
  6. 6.
    Monod, J.: Recherches sur la Croissance des Cultures Bactériennes. Hermann, Paris (1942) Google Scholar
  7. 7.
    Smith, H.L., Waltman, P.: The Theory of the Chemostat, Dynamics of Microbial Competition. Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge (1995) MATHCrossRefGoogle Scholar
  8. 8.
    Andrews, J.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707–723 (1968) CrossRefGoogle Scholar
  9. 9.
    Gajardo, P., Ramírez, H.C., Rapaport, A.: Minimal time sequential batch reactors with bounded and impulse controls for one or more species. SIAM J. Control Optim. 47(6), 2827–2856 (2008) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Betancur, M.J., Moreno, J.A., Moreno-Andrade, I., Buitrón, G.: Practical optimal control of fed-batch bioreactors for the waste water treatment. Int. J. Robust Nonlinear Control 16(3), 173–190 (2006) MATHCrossRefGoogle Scholar
  11. 11.
    Cougnon, P., Dochain, D., Guay, M., Perrier, M.: On-line optimization of fedbatch bioreactors by adaptive extremum seeking control. J. Process Control 21(10), 1526–1532 (2011) CrossRefGoogle Scholar
  12. 12.
    Doran, P.M.: Bioprocess Engineering Principles. Academic Press, London (1995) Google Scholar
  13. 13.
    Bayen, T., Gajardo, P., Mairet, F.: Minimal time control of fed-batch bioreactor with product inhibition. In: 20th Mediterranean Conference on Control and Automation, Barcelona (2012) Google Scholar
  14. 14.
    Rapaport, A., Dochain, D.: Minimal time control of fed-batch processes with growth functions having several maxima. IEEE Trans. Automat. Control 56(11), 2671–2676 (2011) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Silva, C., Trélat, E.: Asymptotic approach on conjugate points for minimal time bang–bang controls. Syst. Control Lett. 59(11), 720–733 (2010) MATHCrossRefGoogle Scholar
  16. 16.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Pergamon/Macmillan, New York (1964). Translated by D.E. Brown MATHGoogle Scholar
  17. 17.
    Rishel, R.W.: An extended Pontryagin principle for control systems whose control laws contain measures. J. Soc. Ind. Appl. Math. Ser. A Control 3, 191–205 (1965) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Cesari, L.: Optimization—Theory and Applications, Problems with Ordinary Differential Equations. Applications of Mathematics (New York), vol. 17. Springer, New York (1983) MATHGoogle Scholar
  19. 19.
    Robbins, H.M.: A generalized Legendre–Clebsch condition for the singular cases of optimal control. IBM. J. Res. Dev. 11, 361–372 (1967) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Université Montpellier 2Montpellier cedex 5France
  2. 2.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations