Periodic Image Trajectories in Earth–Moon Space

Article

Abstract

The problem of identifying orbits that enclose both the Earth and the Moon in a predictable way has theoretical relevance as well as practical implications. In the context of the restricted three-body problem with primaries in circular orbits, periodic trajectories exist and have the property that a third body (e.g. a spacecraft) can describe them indefinitely. Several approaches have been employed in the past for the purpose of identifying similar orbits. In this work the theorem of image trajectories, proven five decades ago, is employed for determining periodic image trajectories in Earth–Moon space. These trajectories exhibit two fundamental features: (i) counterclockwise departure from a perigee on the far side of the Earth, and (ii) counterclockwise arrival to a periselenum on the far side of the Moon. An extensive, systematic numerical search is performed, with the use of a modified Poincaré map, in conjunction with a numerical refinement process, and leads to a variety of periodic orbits, with various interesting features for possible future lunar missions.

Keywords

Image trajectories Periodic orbits Modified Poincaré maps Restricted three-body problem Lunar missions 

References

  1. 1.
    Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth–Moon masses. NASA TR 32-1168 (1968) Google Scholar
  2. 2.
    Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. Dyn. Astron. 7(4), 458–473 (1973) MATHGoogle Scholar
  3. 3.
    Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241–253 (1980) CrossRefMATHGoogle Scholar
  4. 4.
    Gomez, G., Marcote, M.: High-order analytical solutions of Hill’s equations. Celest. Mech. Dyn. Astron. 94(2), 197–211 (2006) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Howell, K.C., Pernicka, H.J.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. Dyn. Astron. 41(1–4), 107–124 (1987) Google Scholar
  6. 6.
    Gomez, G., Masdemont, J., Simo, C.: Quasihalo orbits associated with libration points. Celest. Mech. Dyn. Astron. 46(2), 135–176 (1998) MathSciNetGoogle Scholar
  7. 7.
    Guibout, V., Scheeres, D.: Periodic orbits from generating functions. Adv. Astronaut. Sci. 116(2), 1029–1048 (2004) Google Scholar
  8. 8.
    Martin, C., Conway, B.A., Ibanez, P.: Optimal low-thrust trajectories to the interior Earth–Moon Lagrange point. In: Perozzi, E., Ferraz-Mello, S. (eds.) Space Manifold Dynamics, pp. 161–184. Springer, New York (2010) CrossRefGoogle Scholar
  9. 9.
    Pontani, M., Martin, C., Conway, B.A.: New numerical methods for determining periodic orbits in the circular restricted three-body problem. In: Proceedings of the 61st International Astronautical Congress, Prague (2010) Google Scholar
  10. 10.
    Miele, A.: Theorem of image trajectories in Earth–Moon space. Acta Astron. 6(5), 225–232 (1960) Google Scholar
  11. 11.
    Miele, A., Mancuso, S.: Optimal trajectories for Earth–Moon–Earth flight. Acta Astron. 49(2), 59–71 (2001) CrossRefGoogle Scholar
  12. 12.
    Roy, A.E.: Orbital Motion. IOP Publishing Ltd., London (2005) Google Scholar
  13. 13.
    Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, New York (1967) Google Scholar
  14. 14.
    Miele, A.: Revisit of the theorem of image trajectories in Earth–Moon space. J. Optim. Theory Appl. 147(3), 483–490 (2010) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Schwaniger, A.J.: Trajectories in the Earth–Moon space with symmetric free-return properties. NASA Technical Note D-1833 (1963) Google Scholar
  16. 16.
    Pontani, M., Conway, B.A.: Swarming theory applied to space trajectory optimization. In: Conway, B.A. (ed.) Spacecraft Trajectory Optimization, pp. 263–293. Cambridge University Press, New York (2010) CrossRefGoogle Scholar
  17. 17.
    Pontani, M., Conway, B.A.: Optimal space trajectories via particle swarm technique. Adv. Astronaut. Sci. 136, 53–72 (2010) Google Scholar
  18. 18.
    Pontani, M., Miele, A.: Periodic image trajectories in Earth–Moon space. Aero-astronautics report no. 369, Rice University (2012) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.University of Rome “La Sapienza”RomeItaly
  2. 2.Rice UniversityHoustonUSA

Personalised recommendations