Generalized B-Well-Posedness for Set Optimization Problems

  • X. J. Long
  • J. W. PengEmail author


This paper aims at studying the generalized well-posedness in the sense of Bednarczuk for set optimization problems with set-valued maps. Three kinds of B-well-posedness for set optimization problems are introduced. Some relations among the three kinds of B-well-posedness are established. Necessary and sufficient conditions of well-posedness for set optimization problems are obtained.


B-Well-posedness Set optimization problem u-Minimal solution Hausdorff convergence Generalized B-minimizing sequence 



The authors would like to thank the editor and anonymous referees for their valuable comments and suggestions. This work was supported by the National Natural Science Foundation of China (11001287 and 11171363), the Natural Science Foundation Project of Chongqing (CSTC 2010BB9254 and CSTC 2009BB8240), the Education Committee Project Research Foundation of Chongqing (No. KJ100711), and the Special Fund of Chongqing Key Laboratory (CSTC 2011KLORSE01).


  1. 1.
    Aubin, J.P., Cellina, A.: Differential Inclusions, Set-valued Maps and Viability Theory. Grundlehren Math. Wiss., vol. 264. Springer, Berlin (1984) zbMATHCrossRefGoogle Scholar
  2. 2.
    Chen, G.Y., Huang, X.X., Yang, X.Q.: Vector Optimization: Set-Valued and Variational Analysis. Springer, Berlin (2005) zbMATHGoogle Scholar
  3. 3.
    Klein, E., Thompson, A.C.: Theory of Correspondences. Wiley, New York (1984) zbMATHGoogle Scholar
  4. 4.
    Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematics Systems, vol. 319. Springer, New York (1989) CrossRefGoogle Scholar
  5. 5.
    Kuroiwa, D.: Some duality theorems of set-valued optimization with natural criteria. In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, pp. 221–228. World Scientific, River Edge (1999) Google Scholar
  6. 6.
    Alonso, M., Rodríguez-Marín, L.: Set-relations and optimality conditions in set-valued maps. Nonlinear Anal. 63, 1167–1179 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hernández, E., Rodríguez-Marín, L.: Existence theorems for set optimization problems. Nonlinear Anal. 67, 1276–1736 (2007) zbMATHCrossRefGoogle Scholar
  8. 8.
    Jahn, J., Ha, T.X.D.: New order relations in set optimization. J. Optim. Theory Appl. 148, 209–236 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kuroiwa, D.: Existence theorems of set optimization with set-valued maps. J. Inf. Optim. Sci. 24, 73–84 (2003) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hernández, E., Rodríguez-Marín, L.: Optimality conditions for set-valued maps with set optimization. Nonlinear Anal. 70, 3057–3064 (2009) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hernández, E., Rodríguez-Marín, L., Sama, M.: On solutions of set-valued optimization problems. Comput. Math. Appl. 60, 1401–1408 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valed maps. J. Math. Anal. Appl. 325, 1–18 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hernández, E., Rodríguez-Marín, L.: Lagrangian duality in set-valued optimization. J. Optim. Theory Appl. 134, 119–134 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bednarczuck, E.M., Miglierina, E., Molho, E.: A mountain pass-type theorem for vector-valued functions. Set-Valued Var. Anal. 19, 569–587 (2011) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gutiérrez, C., Jiménez, B., Novo, V., Thibault, L.: Strict approximate solutions in set-valued optimization with applications to the approximate ekeland variational principle. Nonlinear Anal. 73, 3842–3855 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ha, T.X.D.: Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124, 187–206 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004) zbMATHGoogle Scholar
  19. 19.
    Tykhonov, A.N.: On the stability of the functional optimization problems. USSR Comput. Math. Math. Phys. 6, 28–33 (1966) CrossRefGoogle Scholar
  20. 20.
    Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Lecture Notes in Mathematics, vol. 1543. Springer, Berlin (1993) zbMATHGoogle Scholar
  21. 21.
    Zolezzi, T.: Well-posedness criteria in optimization with application to the calculus of variations. Nonlinear Anal. 25, 437–453 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Zolezzi, T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bednarczuck, E.M.: Well posedness of vector optimization problem. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization Problems. Lecture Notes in Economics and Mathematical Systems, vol. 294, pp. 51–61. Springer, Berlin (1987) CrossRefGoogle Scholar
  24. 24.
    Lucchetti, R.: Well posedness, towards vector optimization. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization Problems. Lecture Notes in Economics and Mathematical Systems, vol. 294, pp. 194–207. Springer, Berlin (1987) CrossRefGoogle Scholar
  25. 25.
    Durea, M.: Scalarization for pointwise well-posedness vectorial problems. Math. Methods Oper. Res. 66, 409–418 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Huang, X.X.: Pointwise well-posedness of perturbed vector optimization problems in a vector-valued variational principle. J. Optim. Theory Appl. 108, 671–687 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Xiao, G., Xiao, H., Liu, S.Y.: Scalarization and pointwise well-posedness in vector optimization problems. J. Glob. Optim. 49, 561–574 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Bednarczuck, E.M.: An approach to well-posedness in vector optimization: consequences to stability and parametric optimization. Control Cybern. 23, 107–122 (1994) Google Scholar
  29. 29.
    Huang, X.X.: Extended well-posedness properties of vector optimization problems. J. Optim. Theory Appl. 106, 165–182 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Huang, X.X.: Extended and strongly extended well-posedness of set-valued optimization problems. Math. Methods Oper. Res. 53, 101–116 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Miglierina, E., Molho, E.: Well-posedness and convexity in vector optimization. Math. Methods Oper. Res. 58, 375–385 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Fang, Y.P., Hu, R., Huang, N.J.: Extended B-well-posedness and property (H) for set-valued vector optimization with convexity. J. Optim. Theory Appl. 135, 445–458 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Miglierina, E., Molho, E., Rocca, M.: Well-posedness and scalarization in vector optimization. J. Optim. Theory Appl. 126, 391–409 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Zhang, W.Y., Li, S.J., Teo, K.L.: Well-posedness for set optimization problems. Nonlinear Anal. 71, 3769–3778 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75, 1822–1833 (2011) CrossRefGoogle Scholar
  36. 36.
    Nikodem, K.: Continuity of K-convex set-valued function. Bull. Pol. Acad. Sci., Math. 34, 393–400 (1986) MathSciNetzbMATHGoogle Scholar
  37. 37.
    Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003) zbMATHGoogle Scholar
  38. 38.
    Kuratowski, K.: Topology, Vols. 1 and 2. Academic Press, New York (1968) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsChongqing Technology and Business UniversityChongqingP.R. China
  2. 2.Department of MathematicsChongqing Normal UniversityChongqingP.R. China

Personalised recommendations