Forward–Backward Stochastic Differential Games and Stochastic Control under Model Uncertainty

  • Bernt Øksendal
  • Agnès Sulem


We study optimal stochastic control problems with jumps under model uncertainty. We rewrite such problems as stochastic differential games of forward–backward stochastic differential equations. We prove general stochastic maximum principles for such games, both in the zero-sum case (finding conditions for saddle points) and for the nonzero sum games (finding conditions for Nash equilibria). We then apply these results to study robust optimal portfolio-consumption problems with penalty. We establish a connection between market viability under model uncertainty and equivalent martingale measures. In the case with entropic penalty, we prove a general reduction theorem, stating that a optimal portfolio-consumption problem under model uncertainty can be reduced to a classical portfolio-consumption problem under model certainty, with a change in the utility function, and we relate this to risk sensitive control. In particular, this result shows that model uncertainty increases the Arrow–Pratt risk aversion index.


Forward–backward SDEs Stochastic differential games Maximum principle Model uncertainty Robust control Viability Optimal portfolio Optimal consumption Jump diffusions 



We thank Olivier Menoukeu Pamen and Marie-Claire Quenez for helpful comments.

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no [228087]


  1. 1.
    Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Springer, Berlin (2007) CrossRefGoogle Scholar
  2. 2.
    Øksendal, B., Sulem, A.: Maximum principles for optimal control of forward-backward stochastic differential equations with jumps. SIAM J. Control Optim. 48(5), 2845–2976 (2009) Google Scholar
  3. 3.
    Hamadène, S.: Backward-forward SDE’s and stochastic differential games. Stoch. Process. Appl. 77, 1–15 (1998) CrossRefzbMATHGoogle Scholar
  4. 4.
    An, T.T.K., Øksendal, B.: A maximum principle for stochastic differential games with g-expectation and partial information. Stochastics (2011). doi: 10.1080/17442508.2010.532875 Google Scholar
  5. 5.
    Bordigoni, G., Matoussi, A., Schweizer, M.: A stochastic control approach to a robust utility maximization problem. In: Benth, F.E., et al. (eds.) Stochastic Analysis and Applications, The Abel Symposium, 2005, pp. 125–152. Springer, Berlin (2007) CrossRefGoogle Scholar
  6. 6.
    Jeanblanc, M., Matoussi, A., Ngoupeyou, A.: Robust Utility Maximization in a Discontinuous Filtration (2012) Google Scholar
  7. 7.
    Lim, T., Quenez, M.-C.: Exponential utility maximization and indifference price in an incomplete market with defaults. Electron. J. Probab. 16, 1434–1464 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Øksendal, B., Sulem, A.: Robust stochastic control and equivalent martingale measures. In: Kohatsu-Higa, A., et al. (eds.) Stochastic Analysis and Applications. Progress in Probability, vol. 65, pp. 179–189 (2011) Google Scholar
  9. 9.
    Øksendal, B., Sulem, A.: Portfolio optimization under model uncertainty and BSDE games. Quant. Finance 11(11), 1665–1674 (2011) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Pliska, S.: Introduction to Mathematical Finance. Blackwell, Oxford (1997) Google Scholar
  11. 11.
    Kreps, D.: Arbitrage and equilibrium in economics with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Loewenstein, M., Willard, G.: Local martingales, arbitrage, and viability. Econ. Theory 16, 135–161 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Øksendal, B., Sulem, A.: Viability and martingale measures in jump diffusion markets under partial information. Manuscript (2011) Google Scholar
  14. 14.
    Aase, K., Øksendal, B., Privault, N., Ubøe, J.: White noise generalizations of the Clark–Haussmann–Ocone theorem, with application to mathematical finance. Finance Stoch. 4, 465–496 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, Berlin (2009) CrossRefGoogle Scholar
  16. 16.
    Maenhout, P.: Robust portfolio rules and asset pricing. Rev. Financ. Stud. 17, 951–983 (2004) CrossRefGoogle Scholar
  17. 17.
    Royer, M.: Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Process. Appl. 116, 1358–1376 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Quenez, M.C., Sulem, A.: BSDEs with jumps, optimization and applications to dynamic risk measures. Inria research report rr-7997 (2012) Google Scholar
  19. 19.
    Föllmer, H., Schied, A., Weber, S.: Robust preferences and robust portfolio choice. In: Ciarlet, P., Bensoussan, A., Zhang, Q. (eds.) Mathematical Modelling and Numerical Methods in Finance. Handbook of Numerical Analysis, vol. 15, pp. 29–88 (2009) Google Scholar
  20. 20.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Dept. of Mathematics, University of OsloCenter of Mathematics for Applications (CMA)OsloNorway
  2. 2.INRIA Paris-RocquencourtLe Chesnay CedexFrance

Personalised recommendations