Advertisement

Structure Theory for Maximally Monotone Operators with Points of Continuity

  • Jonathan M. Borwein
  • Liangjin YaoEmail author
Invited Paper

Abstract

In this paper, we consider the structure of maximally monotone operators in Banach space whose domains have nonempty interior and we present new and explicit structure formulas for such operators. Along the way, we provide new proofs of norm-to-weak closedness and of property (Q) for these operators (as recently proven by Voisei). Various applications and limiting examples are given.

Keywords

Local boundedness Maximally monotone operator Monotone operator Norm-weak graph closedness Property (Q) 

Notes

Acknowledgements

Both authors were partially supported by various Australian Research Council grants. They thank Dr. Brailey Sims for his helpful comments, and also thank a referee for his/her careful reading and pertinent comments. The authors especially thank Dr. Robert Csetnek for his many constructive and helpful comments.

References

  1. 1.
    Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Borwein, J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Am. Math. Soc. 135, 3917–3924 (2007) zbMATHCrossRefGoogle Scholar
  3. 3.
    Borwein, J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011) zbMATHCrossRefGoogle Scholar
  5. 5.
    Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press, Cambridge (2010) zbMATHGoogle Scholar
  6. 6.
    Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008) Google Scholar
  7. 7.
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993) zbMATHGoogle Scholar
  8. 8.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) zbMATHGoogle Scholar
  9. 9.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3rd edn. Springer, Berlin (2009) zbMATHGoogle Scholar
  10. 10.
    Simons, S.: Minimax and Monotonicity. Springer, Berlin (1998) Google Scholar
  11. 11.
    Simons, S.: From Hahn–Banach to Monotonicity. Springer, Berlin (2008) zbMATHGoogle Scholar
  12. 12.
    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002) zbMATHCrossRefGoogle Scholar
  13. 13.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, II/A: Linear Monotone Operators. Springer, New York (1990) zbMATHCrossRefGoogle Scholar
  14. 14.
    Zeidler, E.: Nonlinear Functional Analysis and Its Application, II/B: Nonlinear Monotone Operators. Springer, New York (1990) CrossRefGoogle Scholar
  15. 15.
    Voisei, M.D.: Characterizations and continuity properties for maximal monotone operators with non-empty domain interior. J. Math. Anal. Appl. 391, 119–138 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Borwein, J.M., Strojwas, H.M.: Directionally Lipschitzian mappings on Baire spaces. Can. J. Math. 36, 95–130 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Borwein, J.M., Strojwas, H.M.: The hypertangent cone. Nonlinear Anal. 13, 125–139 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hou, S.H.: On property (Q) and other semicontinuity properties of multifunctions. Pac. J. Math. 103, 39–56 (1982) zbMATHCrossRefGoogle Scholar
  19. 19.
    Megginson, R.E.: An Introduction to Banach Space Theory. Springer, Berlin (1998) zbMATHCrossRefGoogle Scholar
  20. 20.
    Rudin, R.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991) zbMATHGoogle Scholar
  21. 21.
    Rockafellar, R.T.: On the maximal monotonicity of sums on nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Rockafellar, R.T.: Local boundedness of nonlinear, monotone operators. Mich. Math. J. 16, 397–407 (1969) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Borwein, J.M., Fitzpatrick, S., Girgensohn, R.: Subdifferentials whose graphs are not norm × weak closed. Can. Math. Bull. 4, 538–545 (2003) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984) zbMATHGoogle Scholar
  25. 25.
    Yao, L.: The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximally monotone. Nonlinear Anal. 74, 6144–6152 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Borwein, J.M.: Asplund decompositions of monotone operator. In: Pietrus, A., Geoffroy, M.H. (eds.) Proc. Control, Set-Valued Analysis and Applications. ESAIM: Proceedings, vol. 17, pp. 19–25 (2007) Google Scholar
  27. 27.
    Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Borwein, J.M., Fitzpatrick, S., Kenderov, P.: Minimal convex uscos and monotone. Can. J. Math. 43, 461–476 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Borwein, J.M., Zhu, Q.: Multifunctional and functional analytic methods in nonsmooth analysis. In: Clarke, F.H., Stern, R.J. (eds.) Nonlinear Analysis, Differential Equations and Control, NATO Advanced Study Institute, Montreal. NATO Science Series C, vol. 528, pp. 61–157. Kluwer Academic, Dordrecht (1999) CrossRefGoogle Scholar
  30. 30.
    Preiss, D., Phelps, R.R., Namioka, I.: Smooth Banach spaces, weak Asplund spaces and monotone or usco mappings. Isr. J. Math. 72, 257–279 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Auslender, A.: Convergence of stationary sequences for variational inequalities with maximal monotone. Appl. Math. Optim. 28, 161–172 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Yao, L.: The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone. Set-Valued Var. Anal. 20, 155–167 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984) CrossRefGoogle Scholar
  34. 34.
    Georgiev, P.Gr.: Porosity and differentiability in smooth Banach spaces. Proc. Am. Math. Soc. 133, 1621–1628 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Veselý, L.: On the multiplicity points of monotone operators of separable Banach space. Comment. Math. Univ. Carol. 27, 551–570 (1986) zbMATHGoogle Scholar
  36. 36.
    Veselý, L.: On the multiplicity points of monotone operators on separable Banach spaces II. Comment. Math. Univ. Carol. 2(8), 295–299 (1987) Google Scholar
  37. 37.
    Cheng, L., Zhang, W.: A note on non-support points, negligible sets, Gâteaux differentiability and Lipschitz embeddings. J. Math. Anal. Appl. 350, 531–536 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Jofré, A., Thibault, L.: D-representation of subdiferentials of directionally Lipschitz functions. Proc. Am. Math. Soc. 110, 117–123 (1990) zbMATHCrossRefGoogle Scholar
  39. 39.
    Thibault, L., Zagrodny, D.: Integration of subdiferentials of lower semicontinuous functions on Banach spaces. J. Math. Anal. Appl. 189, 33–58 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Löhne, A.: A characterization of maximal monotone operators. Set-Valued Anal. 16, 693–700 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Veselý, L.: A parametric smooth variational principle and support properties of convex sets and functions. J. Math. Anal. Appl. 350, 550–561 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Rockafellar, R.T.: On the maximal monotonicity of sums on nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Voisei, M.D., Zălinescu, C.: Maximal monotonicity criteria for the composition and the sum under weak interiority conditions. Math. Program., Ser. B 123, 265–283 (2010) zbMATHCrossRefGoogle Scholar
  44. 44.
    Borwein, J.M., Yao, L.: Some Results on the Convexity of the Closure of the Domain of a Maximally Monotone Operator (2012). submitted. http://arxiv.org/abs/1205.4482v1

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.CARMAUniversity of NewcastleNewcastleAustralia

Personalised recommendations