Advertisement

Journal of Optimization Theory and Applications

, Volume 156, Issue 2, pp 294–319 | Cite as

Minimization of Eigenvalues of One-Dimensional p-Laplacian with Integrable Potentials

Article

Abstract

In this paper, we will use the variational method and limiting approach to solve the minimization problems of the Dirichlet/Neumann eigenvalues of the one-dimensional p-Laplacian when the L 1 norm of integrable potentials is given. Combining with the results for the corresponding maximization problems, we have obtained the explicit results for these eigenvalues.

Keywords

Eigenvalue p-Laplacian Minimization problem Integrable potential Critical equation 

Notes

Acknowledgements

The second author is supported by the National Natural Science Foundation of China (Grant No. 10901089), and the third author is supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20090002110079) and the 111 Project of China (2007).

References

  1. 1.
    Derlet, A., Gossez, J.-P., Takáč, P.: Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight. J. Math. Anal. Appl. 371, 69–79 (2010) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Kao, C.-Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5, 315–335 (2008) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Lou, Y., Yanagida, E.: Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Jpn. J. Ind. Appl. Math. 23, 275–292 (2006) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Liang, X., Lin, X., Matano, H.: A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction–diffusion equations. Trans. Am. Math. Soc. 362, 5605–5633 (2010) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231, 57–77 (2006) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Karaa, S.: Sharp estimates for the eigenvalues of some differential equations. SIAM J. Math. Anal. 29, 1279–1300 (1998) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Krein, M.G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. Transl. Am. Math. Soc. 2 1, 163–187 (1955) MathSciNetGoogle Scholar
  8. 8.
    Li, W., Yan, P.: Continuity and continuous differentiability of half-eigenvalues in potentials. Commun. Contemp. Math. 12, 977–996 (2010) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Meng, G., Yan, P., Zhang, M.: Spectrum of one-dimensional p-Laplacian with an indefinite integrable weight. Mediterr. J. Math. 7, 225–248 (2010) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Meng, G., Zhang, M.: Continuity in weak topology: first order linear systems of ODE. Acta Math. Sin. Engl. Ser. 26, 1287–1298 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Möller, M., Zettl, A.: Differentiable dependence of eigenvalues of operators in Banach spaces. J. Oper. Theory 36, 335–355 (1996) MATHGoogle Scholar
  12. 12.
    Pöschel, J., Trubowitz, E.: The Inverse Spectral Theory. Academic Press, New York (1987) Google Scholar
  13. 13.
    Yan, P., Zhang, M.: Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian. Trans. Am. Math. Soc. 363, 2003–2028 (2011) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Zettl, A.: Sturm-Liouville Theory. Math. Surveys & Monographs, vol. 121. Am. Math. Soc., Providence (2005) MATHGoogle Scholar
  15. 15.
    Zhang, M.: Continuity in weak topology: higher order linear systems of ODE. Sci. China Ser. A 51, 1036–1058 (2008) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Wei, Q., Meng, G., Zhang, M.: Extremal values of eigenvalues of Sturm–Liouville operators with potentials in L 1 balls. J. Differ. Equ. 247, 364–400 (2009) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Zhang, M.: Extremal values of smallest eigenvalues of hill’s operators with potentials in L 1 balls. J. Differ. Equ. 246, 4188–4220 (2009) MATHCrossRefGoogle Scholar
  18. 18.
    Zhang, M.: Extremal eigenvalues of measure differential equations with fixed variation. Sci. China Math. 53, 2573–2588 (2010) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Meng, G., Yan, P., Zhang, M.: Maximization of eigenvalues of one-dimensional p-Laplacian with integrable potentials. Commun. Contemp. Math., to appear Google Scholar
  20. 20.
    Binding, P.L., Dràbek, P.: Sturm–Liouville theory for the p-Laplacian. Studia Sci. Math. Hung. 40, 375–396 (2003) MATHGoogle Scholar
  21. 21.
    Zhang, M.: The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials. J. London Math. Soc. (2) 64, 125–143 (2001) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I. Interscience, New York (1958) Google Scholar
  23. 23.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, III, Variational Methods and Optimization. Springer, New York (1985) MATHGoogle Scholar
  24. 24.
    Binding, P.A., Rynne, B.P.: The spectrum of the periodic p-Laplacian. J. Differ. Equ. 235, 199–218 (2007) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Binding, P.A., Rynne, B.P.: Variational and non-variational eigenvalues of the p-Laplacian. J. Differ. Equ. 244, 24–39 (2008) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Dràbek, P., Takáč, P.: On variational eigenvalues of the p-Laplacian which are not of Ljusternik–Schnirelmann-type. J. London Math. Soc. (2) 81, 625–649 (2010) MATHCrossRefGoogle Scholar
  27. 27.
    Meng, G.: Continuity of solutions and eigenvalues in measures with weak topology. PhD thesis, Tsinghua University, Beijing (2009) Google Scholar
  28. 28.
    Mingarelli, A.B.: Volterra–Stieltjes Integral Equations and Generalized Ordinary Differential Expressions. Lect. Notes Math., vol. 989. Springer, Berlin (1983) MATHGoogle Scholar
  29. 29.
    Zhang, M.: Certain classes of potentials for p-Laplacian to be non-degenerate. Math. Nachr. 278, 1823–1836 (2005) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Zhang, M.: Nonuniform nonresonance of semilinear differential equations. J. Differ. Equ. 166, 33–50 (2000) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Graduate UniversityChinese Academy of SciencesBeijingChina
  2. 2.Department of Mathematical SciencesTsinghua UniversityBeijingChina
  3. 3.Zhou Pei-Yuan Center for Applied MathematicsTsinghua UniversityBeijingChina

Personalised recommendations