Journal of Optimization Theory and Applications

, Volume 156, Issue 2, pp 294–319 | Cite as

Minimization of Eigenvalues of One-Dimensional p-Laplacian with Integrable Potentials

  • Gang MengEmail author
  • Ping Yan
  • Meirong Zhang


In this paper, we will use the variational method and limiting approach to solve the minimization problems of the Dirichlet/Neumann eigenvalues of the one-dimensional p-Laplacian when the L 1 norm of integrable potentials is given. Combining with the results for the corresponding maximization problems, we have obtained the explicit results for these eigenvalues.


Eigenvalue p-Laplacian Minimization problem Integrable potential Critical equation 



The second author is supported by the National Natural Science Foundation of China (Grant No. 10901089), and the third author is supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20090002110079) and the 111 Project of China (2007).


  1. 1.
    Derlet, A., Gossez, J.-P., Takáč, P.: Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight. J. Math. Anal. Appl. 371, 69–79 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Kao, C.-Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5, 315–335 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Lou, Y., Yanagida, E.: Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Jpn. J. Ind. Appl. Math. 23, 275–292 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Liang, X., Lin, X., Matano, H.: A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction–diffusion equations. Trans. Am. Math. Soc. 362, 5605–5633 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231, 57–77 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Karaa, S.: Sharp estimates for the eigenvalues of some differential equations. SIAM J. Math. Anal. 29, 1279–1300 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Krein, M.G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. Transl. Am. Math. Soc. 2 1, 163–187 (1955) MathSciNetGoogle Scholar
  8. 8.
    Li, W., Yan, P.: Continuity and continuous differentiability of half-eigenvalues in potentials. Commun. Contemp. Math. 12, 977–996 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Meng, G., Yan, P., Zhang, M.: Spectrum of one-dimensional p-Laplacian with an indefinite integrable weight. Mediterr. J. Math. 7, 225–248 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Meng, G., Zhang, M.: Continuity in weak topology: first order linear systems of ODE. Acta Math. Sin. Engl. Ser. 26, 1287–1298 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Möller, M., Zettl, A.: Differentiable dependence of eigenvalues of operators in Banach spaces. J. Oper. Theory 36, 335–355 (1996) zbMATHGoogle Scholar
  12. 12.
    Pöschel, J., Trubowitz, E.: The Inverse Spectral Theory. Academic Press, New York (1987) Google Scholar
  13. 13.
    Yan, P., Zhang, M.: Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian. Trans. Am. Math. Soc. 363, 2003–2028 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Zettl, A.: Sturm-Liouville Theory. Math. Surveys & Monographs, vol. 121. Am. Math. Soc., Providence (2005) zbMATHGoogle Scholar
  15. 15.
    Zhang, M.: Continuity in weak topology: higher order linear systems of ODE. Sci. China Ser. A 51, 1036–1058 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Wei, Q., Meng, G., Zhang, M.: Extremal values of eigenvalues of Sturm–Liouville operators with potentials in L 1 balls. J. Differ. Equ. 247, 364–400 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Zhang, M.: Extremal values of smallest eigenvalues of hill’s operators with potentials in L 1 balls. J. Differ. Equ. 246, 4188–4220 (2009) zbMATHCrossRefGoogle Scholar
  18. 18.
    Zhang, M.: Extremal eigenvalues of measure differential equations with fixed variation. Sci. China Math. 53, 2573–2588 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Meng, G., Yan, P., Zhang, M.: Maximization of eigenvalues of one-dimensional p-Laplacian with integrable potentials. Commun. Contemp. Math., to appear Google Scholar
  20. 20.
    Binding, P.L., Dràbek, P.: Sturm–Liouville theory for the p-Laplacian. Studia Sci. Math. Hung. 40, 375–396 (2003) zbMATHGoogle Scholar
  21. 21.
    Zhang, M.: The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials. J. London Math. Soc. (2) 64, 125–143 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I. Interscience, New York (1958) Google Scholar
  23. 23.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, III, Variational Methods and Optimization. Springer, New York (1985) zbMATHGoogle Scholar
  24. 24.
    Binding, P.A., Rynne, B.P.: The spectrum of the periodic p-Laplacian. J. Differ. Equ. 235, 199–218 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Binding, P.A., Rynne, B.P.: Variational and non-variational eigenvalues of the p-Laplacian. J. Differ. Equ. 244, 24–39 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Dràbek, P., Takáč, P.: On variational eigenvalues of the p-Laplacian which are not of Ljusternik–Schnirelmann-type. J. London Math. Soc. (2) 81, 625–649 (2010) zbMATHCrossRefGoogle Scholar
  27. 27.
    Meng, G.: Continuity of solutions and eigenvalues in measures with weak topology. PhD thesis, Tsinghua University, Beijing (2009) Google Scholar
  28. 28.
    Mingarelli, A.B.: Volterra–Stieltjes Integral Equations and Generalized Ordinary Differential Expressions. Lect. Notes Math., vol. 989. Springer, Berlin (1983) zbMATHGoogle Scholar
  29. 29.
    Zhang, M.: Certain classes of potentials for p-Laplacian to be non-degenerate. Math. Nachr. 278, 1823–1836 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhang, M.: Nonuniform nonresonance of semilinear differential equations. J. Differ. Equ. 166, 33–50 (2000) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Graduate UniversityChinese Academy of SciencesBeijingChina
  2. 2.Department of Mathematical SciencesTsinghua UniversityBeijingChina
  3. 3.Zhou Pei-Yuan Center for Applied MathematicsTsinghua UniversityBeijingChina

Personalised recommendations