Journal of Optimization Theory and Applications

, Volume 156, Issue 2, pp 450–468 | Cite as

Hidden Genes Genetic Optimization for Variable-Size Design Space Problems

Article

Abstract

This paper introduces the biologically inspired concept of hidden genes genetic algorithms; they search for optimal solutions to global optimization problems of multimodal objective functions with a variable number of design variables. A fixed chromosome length is assumed for all solutions in the population. Each chromosome is divided into effective and ineffective segments. The effective segment includes the design variables for that solution. The ineffective segment includes only hidden genes. Hidden genes are excluded in objective function evaluations. The effect of the hidden genes on the convergence of the genetic algorithm is studied. Two test cases are presented.

Keywords

Global optimization Variable length genetic algorithms Hidden genes genetic algorithms 

References

  1. 1.
    Rao, S.S.: Engineering Optimization, Theory and Practice, 4th edn. Wiley, Hoboken (2009) Google Scholar
  2. 2.
    Gray, P., Hart, W., Painton, L., Phillips, C., Trahan, M., Wagner, J.: A survey of global optimization methods. Tech. rep, Sandia National Laboratories, Albuquerque, NM (1997) Google Scholar
  3. 3.
    Storn, R., Price, K.: Minimizing the real functions of the ICEC’96 contest by differential evolution. In: Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan (1996) Google Scholar
  4. 4.
    Bartholomew-Biggs, M.: Nonlinear Optimization with Engineering Applications. Springer, New York (2008) MATHCrossRefGoogle Scholar
  5. 5.
    Dakin, R.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Norkin, V.I., Pflug, G., Ruszczyliski, A.: A branch and bound method for stochastic global optimization. Math. Program. 83, 425–450 (1998) MATHGoogle Scholar
  7. 7.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley/Longman, Reading (1989) MATHGoogle Scholar
  8. 8.
    Coly, D.: An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific, River Edge (1999) Google Scholar
  9. 9.
    Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm. ACM Trans. Math. Softw. 13(3) (1987) Google Scholar
  10. 10.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceeding of the 1995 IEEE International Conference on Neural Networks. IEEE Service Center, Piscataway (1995) Google Scholar
  11. 11.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 26, 29–41 (1996) CrossRefGoogle Scholar
  12. 12.
    Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Trans. Evol. Comput. 11(5), 651–665 (2007). doi:10.1109/TEVC.2006.890229 CrossRefGoogle Scholar
  13. 13.
    Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002). doi:10.1109/TEVC.2002.802450 CrossRefGoogle Scholar
  14. 14.
    Izzo, D., Becerra, V., Myatt, D., Nasuto, S., Bishop, J.: Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. J. Glob. Optim. 38(2), 283–296 (2007) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Sobieszczanski-Sobieski, J., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. Struct. Multidiscip. Optim. 14, 1–23 (1997). doi:10.1007/BF01197554 CrossRefGoogle Scholar
  16. 16.
    Pullen, S., Parkinson, B.: System design under uncertainty: evolutionary optimization of the gravity probe-b spacecraft. In: Davidor, Y., Schwefel, H.P., Männer, R. (eds.) Parallel Problem Solving from Nature—PPSN III. Lecture Notes in Computer Science, vol. 866, pp. 598–607. Springer, Berlin (1994). doi:10.1007/3-540-58484-6_302 CrossRefGoogle Scholar
  17. 17.
    Eschenauer, H.A., Koski, J., Osyczka, A.: In: Multicriteria design optimization: Procedures and applications (1990) CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Kamalian, R., Agogino, A., Séquin, C.: Design synthesis of microelectromechanical systems using genetic algorithms with component-based genotype representation. In: GECCO’06, Seattle (2006) Google Scholar
  19. 19.
    Bandyopadhyay, S., Pal, S.K.: Pixel classification using variable string genetic algorithms with chromosome differentiation. IEEE Trans. Geosci. Remote Sens. 39(2), 303–308 (2001) CrossRefGoogle Scholar
  20. 20.
    Eggermont, J., Eiben, A., van Hemert, J.: A comparison of genetic programming variants for data classification. In: Proceedings on the Third Symposium on Intelligent Data Analysis (IDA-99). LNCS, vol. 1642 (1999) Google Scholar
  21. 21.
    Maulik, U., Saha, I.: Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery. Pattern Recognit. 42(9), 2135–2149 (2009). doi:10.1016/j.patcog.2009.01.011 http://www.sciencedirect.com/science/article/B6V14-4VDS885-4/2/b7b025e830761db87614c0cd9f0a614d MATHCrossRefGoogle Scholar
  22. 22.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2(1), 5–30 (1996) CrossRefGoogle Scholar
  23. 23.
    Abdelkhalik, O.: Orbit design and estimation for surveillance missions using genetic algorithms. Ph.D. thesis, Texas A&M University, College station (2005) Google Scholar
  24. 24.
    Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, New York (1998) Google Scholar
  25. 25.
    Falkenauer, E.: A genetic algorithm for grouping. In: Gutierrez, R., Valerrama, M. (eds.) The Fifth International Symposiom on Applied Stochastic Models and Data Analysis, pp. 198–206. World Scientific, Singapore (1991) Google Scholar
  26. 26.
    Goldberg, D., Korb, B., Deb, K., et al.: Messy genetic algorithms: motivation, analysis, and first results. Complex Syst. 3(5), 493–530 (1989) MathSciNetMATHGoogle Scholar
  27. 27.
    Smith, S.F.: Adaptive learning systems. In: Expert Systems: Principles and Case Studies. Chapman and Hall, New York (1984). Google Scholar
  28. 28.
    Hutt, B., Warwick, K.: Synapsing variable-length crossover: meaningful crossover for variable-length genomes. IEEE Trans. Evol. Comput. 11(1), 118–131 (2007) CrossRefGoogle Scholar
  29. 29.
    Gad, A., Abdelkhalik, O.: Hidden genes genetic algorithm for multi-gravity-assist trajectories optimization. AIAA J. Spacecr. Rocket. 48(4), 629–641 (2011) CrossRefGoogle Scholar
  30. 30.
    Starr, B.: Spooled dna and hidden genes: the latest finding in how our dna is organized and read. The tech museum of innovation, department of genetics, Stanford school of medicine. 201 South Market Street San Jose, CA 95113 http://www.thetech.org/genetics/news.php?id=31
  31. 31.
    Epitropakis, M., Plagianakos, V., Vrahatis, M.: Finding multiple global optima exploiting differential evolution’s niching capability. In: IEEE Symposium on Differential Evolution, 2011 (SDE 2011). IEEE Symposium Series on Computational Intelligence, Paris, France, p. 80–87 (2011). doi:10.1109/SDE.2011.5952058 Google Scholar
  32. 32.
    Wie, B.: In: Space Vehicle Dynamics and Control. AIAA Educational Series (1998). Reston, VA Google Scholar
  33. 33.
    Abilleira, F.: Broken-plane maneuver applications for earth to mars trajectories. In: 20th International Symposium on Space Flight Dynamics (2007) Google Scholar
  34. 34.
    Navagh, J.: Optimizing interplanetary trajectories with deep space maneuvers. NASA CR-4546, NASA Langley Research Center, Hampton, VA (1993) Google Scholar
  35. 35.
    Izzo, D., Becerra, V., Myatt, D., Nasuto, S., Bishop, J.: Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. J. Glob. Optim. 38(2), 283–296 (2007) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Olympio, J.T., Marmorat, J.P.: Global trajectory optimisation: can we prune the solution space when considering deep space maneuvers? Final report. European Space Agency (2007) Google Scholar
  37. 37.
    Abdelkhalik, O.: Multi-gravity-assist trajectories optimization: comparison between the hidden genes and the dynamic-size multiple populations genetic algorithms. In: AAS/AIAA Astrodynamics Specialist Conference, AAS11-620. Girdwood, Alaska (2011) Google Scholar
  38. 38.
    Vasile, M., Minisci, E., Locatelli, M.: An inflationary differential evolution algorithm for space trajectory optimization. IEEE Trans. Evol. Comput. 15(2), 267–281 (2011). doi:10.1109/TEVC.2010.2087026 CrossRefGoogle Scholar
  39. 39.
    Vasile, M., Minisci, E., Locatelli, M.: Analysis of some global optimization algorithms for space trajectory design. J. Spacecr. Rockets 47(2), 334–344 (2010). doi:10.2514/1.45742 CrossRefGoogle Scholar
  40. 40.
    Olds, A., Kluever, C., Cupples, M.: Interplanetary mission design using differential evolution. J. Spacecr. Rockets 44(5), 1060–1070 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Mechanical Engineering-Engineering Mechanics DepartmentMichigan Tech UniversityHoughtonUSA

Personalised recommendations