Advertisement

Journal of Optimization Theory and Applications

, Volume 155, Issue 2, pp 650–668 | Cite as

The Myerson Value and Superfluous Supports in Union Stable Systems

  • E. Algaba
  • J. M. Bilbao
  • R. van den Brink
  • J. J. López
Article

Abstract

In this paper, the set of feasible coalitions in a cooperative game is given by a union stable system. Well-known examples of such systems are communication situations and permission structures. Two games associated with a game on a union stable system are the restricted game (on the set of players in the game) and the conference game (on the set of supports of the system). We define two types of superfluous support property through these two games and provide new characterizations for the Myerson value. Finally, we analyze inheritance of properties between the restricted game and the conference game.

Keywords

Union stable system Myerson value Superfluous support property Restricted game Conference game 

Notes

Acknowledgements

This research was finished while the first author was visiting Tinbergen Institute and VU University Amsterdam, under grant Ref. 24022011 of Seville University. Also, this visit was partially supported by Tinbergen Institute. Moreover, this work was presented in some conferences under financial support of the project ECO201017766.

References

  1. 1.
    Myerson, R.B.: Graphs and cooperation in games. Math. Oper. Res. 2, 225–229 (1977) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Owen, G.: Values of graph-restricted games. SIAM J. Algebr. Discrete Methods 7, 210–220 (1986) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Borm, P., Owen, G., Tijs, S.H.: On the position value for communication situations. SIAM J. Discrete Math. 5, 305–320 (1992) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    van den Nouweland, A., Borm, P., Tijs, S.H.: Allocation rules for hypergraph communication situations. Int. J. Game Theory 20, 255–268 (1992) MATHCrossRefGoogle Scholar
  5. 5.
    Potters, J.A.M., Reijnierse, H.: Γ-Component additive games. Int. J. Game Theory 24, 49–56 (1995) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Myerson, R.B.: Conference structures and fair allocation rules. Int. J. Game Theory 9, 169–182 (1980) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Algaba, E., Bilbao, J.M., Borm, P., López, J.J.: The position value for union stable systems. Math. Methods Oper. Res. 52, 221–236 (2000) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Algaba, E., Bilbao, J.M., Borm, P., López, J.J.: The Myerson value for union stable structures. Math. Methods Oper. Res. 54, 359–371 (2001) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    van den Brink, R.: An axiomatization of the disjunctive permission value for games with a permission structure. Int. J. Game Theory 26, 27–43 (1997) MATHCrossRefGoogle Scholar
  10. 10.
    Gilles, R.P., Owen, G., van den Brink, R.: Games with permission structures: the conjunctive approach. Int. J. Game Theory 20, 277–293 (1992) MATHCrossRefGoogle Scholar
  11. 11.
    Algaba, E., Bilbao, J.M., López, J.J.: The position value in communication structures. Math. Methods Oper. Res. 59, 465–477 (2004) MathSciNetMATHGoogle Scholar
  12. 12.
    Faigle, U., Grabish, M., Heyne, M.: Monge extensions of cooperation and communication structures. Eur. J. Oper. Res. 206, 104–110 (2010) MATHCrossRefGoogle Scholar
  13. 13.
    van den Nouweland, A.: Games and graphs in economics situations. Ph.D. Thesis, Tilburg University (1993) Google Scholar
  14. 14.
    van den Brink, R.: On hierarchies and communication. Soc. Choice Welf. (2011). doi: 10.1007/s00355-011-0557-y
  15. 15.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. II, pp. 307–317. Princeton University Press, Princeton (1953) Google Scholar
  16. 16.
    Meessen, R.: Communication games. M.S. Thesis, Nijmegen University (1988) Google Scholar
  17. 17.
    van den Brink, R., van der Laan, G., Pruzhansky, V.: Harsanyi power solutions for graph-restricted games. Int. J. Game Theory 40, 87–110 (2011) MATHCrossRefGoogle Scholar
  18. 18.
    Algaba, E., Bilbao, J.M., van den Brink, R.: Harsanyi power solutions for games on union stable systems. Tinbergen Discussion Paper 11/127-1, Tinbergen Institute and VU University, Amsterdam (2011) Google Scholar
  19. 19.
    van den Nouweland, A., Borm, P.: On the convexity of communication games. Int. J. Game Theory 19, 421–430 (1990) CrossRefGoogle Scholar
  20. 20.
    Bondareva, O.: Some applications of linear programming methods to the theory of cooperative games. Probl. Kibern. 10, 119–139 (1963) MathSciNetGoogle Scholar
  21. 21.
    Shapley, L.S.: On balanced sets and cores. Nav. Res. Logist. Q. 14, 453–460 (1967) CrossRefGoogle Scholar
  22. 22.
    Algaba, E., Bilbao, J.M., López, J.J.: A unified approach to restricted games. Theory Decis. 50, 333–345 (2001) MATHCrossRefGoogle Scholar
  23. 23.
    Jackson, M.O., Wolinsky, A.: A strategic model of social and economic networks. J. Econ. Theory 71, 44–74 (1996) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • E. Algaba
    • 1
  • J. M. Bilbao
    • 1
  • R. van den Brink
    • 2
  • J. J. López
    • 3
  1. 1.Matemática Aplicada IIEscuela Superior de IngenierosSevillaSpain
  2. 2.Department of EconometricsVU University and Tinbergen InstituteAmsterdamThe Netherlands
  3. 3.Matemática Aplicada IIEscuela Universitaria PolitécnicaSevillaSpain

Personalised recommendations