Journal of Optimization Theory and Applications

, Volume 155, Issue 2, pp 453–476 | Cite as

Necessary Optimality Conditions for Higher-Order Infinite Horizon Variational Problems on Time Scales

  • Natália Martins
  • Delfim F. M. TorresEmail author


We obtain Euler–Lagrange and transversality optimality conditions for higher-order infinite horizon variational problems on a time scale. The new necessary optimality conditions improve the classical results both in the continuous and discrete settings: Our results seem new and interesting even in the particular cases when the time scale is the set of real numbers or the set of integers.


Time scales Calculus of variations Infinite horizon problems Euler–Lagrange equations Transversality conditions 



This work was supported by FEDER funds through COMPETE—Operational Programme Factors of Competitiveness (“Programa Operacional Factores de Competitividade”) and by Portuguese funds through the Center for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science and Technology (“FCT—Fundação para a Ciência e a Tecnologia”), within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. Torres was also supported by project PTDC/MAT/113470/2009.


  1. 1.
    Chiang, A.C.: Elements of Dynamic Optimization. McGraw-Hill, Singapore (1992) Google Scholar
  2. 2.
    Sethi, S.P., Thompson, G.L.: Optimal Control Theory. Kluwer Academic, Boston, MA (2000) zbMATHGoogle Scholar
  3. 3.
    Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43, 718–726 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Almeida, R., Torres, D.F.M.: Isoperimetric problems on time scales with nabla derivatives. J. Vib. Control 15, 951–958 (2009) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Atici, F.M., Uysal, F.: A production-inventory model of HMMS on time scales. Appl. Math. Lett. 21, 236–243 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Malinowska, A.B., Torres, D.F.M.: Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete Contin. Dyn. Syst. 29, 577–593 (2011) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bohner, M.: Calculus of variations on time scales. Dyn. Syst. Appl. 13, 339–349 (2004) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ferreira, R.A.C., Malinowska, A.B., Torres, D.F.M.: Optimality conditions for the calculus of variations with higher-order delta derivatives. Appl. Math. Lett. 24, 87–92 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Brock, W.A.: On existence of weakly maximal programmes in a multi-sector economy. Rev. Econ. Stud. 37, 275–280 (1970) zbMATHCrossRefGoogle Scholar
  10. 10.
    Gale, D.: On optimal development in a multisector economy. Rev. Econ. Stud. 34, 1–19 (1967) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Schochetman, I.E., Smith, R.L.: Optimality criteria for deterministic discrete-time infinite horizon optimization. Int. J. Math. Math. Sci. 2005, 57–80 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    von Weizsäcker, C.C.: Existence of optimal programs of accumulation for an infinite time horizon. Rev. Econ. Stud. 32, 85–104 (1965) CrossRefGoogle Scholar
  13. 13.
    Zaslavski, A.J.: Turnpike Properties in the Calculus of Variations and Optimal Control. Springer, New York (2006) zbMATHGoogle Scholar
  14. 14.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II. Grundlehren der Mathematischen Wissenschaften, vol. 331. Springer, Berlin (2006) Google Scholar
  15. 15.
    Malinowska, A.B., Martins, N., Torres, D.F.M.: Transversality conditions for infinite horizon variational problems on time scales. Optim. Lett. 5, 41–53 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Martins, N., Torres, D.F.M.: Higher-order infinite horizon variational problems in discrete quantum calculus. Comput. Math. Appl. (2012), in press. doi: 10.1016/j.camwa.2011.12.006 MathSciNetGoogle Scholar
  17. 17.
    Okomura, R., Cai, D., Nitta, T.G.: Transversality conditions for infinite horizon optimality: higher order differential problems. Nonlinear Anal. 71, e1980–e1984 (2009) CrossRefGoogle Scholar
  18. 18.
    Cai, D., Nitta, T.G.: Transversality conditions for higher order infinite horizon discrete time optimization problems (2010). arXiv:1004.3093 [math.OC]
  19. 19.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001) zbMATHCrossRefGoogle Scholar
  20. 20.
    Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) zbMATHCrossRefGoogle Scholar
  21. 21.
    Ferreira, R.A.C., Torres, D.F.M.: Higher-order calculus of variations on time scales. In: Sarychev, A., Shiryaev, A., Guerra, M., Grossinho, M.R. (eds.) Mathematical Control Theory and Finance, pp. 149–159. Springer, Berlin (2008) CrossRefGoogle Scholar
  22. 22.
    Martins, N., Torres, D.F.M.: Calculus of variations on time scales with nabla derivatives. Nonlinear Anal. 71, e763–e773 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Lang, S.: Undergraduate Analysis. Springer, New York (1997) Google Scholar
  24. 24.
    Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AveiroAveiroPortugal
  2. 2.Research Group on Mathematical Theory of Systems and Control, Center for Research and Development in Mathematics and Applications, Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations