Journal of Optimization Theory and Applications

, Volume 154, Issue 3, pp 713–758 | Cite as

Optimal Control and Applications to Aerospace: Some Results and Challenges

  • E. TrélatEmail author


This article surveys the usual techniques of nonlinear optimal control such as the Pontryagin Maximum Principle and the conjugate point theory, and how they can be implemented numerically, with a special focus on applications to aerospace problems. In practice the knowledge resulting from the maximum principle is often insufficient for solving the problem, in particular because of the well-known problem of initializing adequately the shooting method. In this survey article it is explained how the usual tools of optimal control can be combined with other mathematical techniques to improve significantly their performances and widen their domain of application. The focus is put onto three important issues. The first is geometric optimal control, which is a theory that has emerged in the 1980s and is combining optimal control with various concepts of differential geometry, the ultimate objective being to derive optimal synthesis results for general classes of control systems. Its applicability and relevance is demonstrated on the problem of atmospheric reentry of a space shuttle. The second is the powerful continuation or homotopy method, consisting of deforming continuously a problem toward a simpler one and then of solving a series of parameterized problems to end up with the solution of the initial problem. After having recalled its mathematical foundations, it is shown how to combine successfully this method with the shooting method on several aerospace problems such as the orbit transfer problem. The third one consists of concepts of dynamical system theory, providing evidence of nice properties of the celestial dynamics that are of great interest for future mission design such as low-cost interplanetary space missions. The article ends with open problems and perspectives.


Optimal control Pontryagin maximum principle Second-order conditions Conjugate point Numerical methods Shooting method Orbit transfer Atmospheric reentry Geometric optimal control Optimal synthesis Continuation/homotopy method Dynamical systems Mission design 



I am grateful to B. Bonnard, U. Boscain, J.-B. Caillau, J. Gergaud, F. Giannessi, D.G. Hull, A. Rapaport, and M. Sigalotti for discussions and advice.


  1. 1.
    Cesari, L.: Optimization—Theory and Applications. Problems with Ordinary Differential Equations. Applications of Mathematics, vol. 17. Springer, Berlin (1983) zbMATHGoogle Scholar
  2. 2.
    Filippov, A.F.: On certain questions in the theory of optimal control. Vestnik Moskov. Univ., Ser. Mat., Mekh., Abstr., Fiz., Khim. 2, 25–32 (1959). English transl, J. Soc. Ind. Appl. Math., Ser. A., Control, 1, 76–84 (1962) Google Scholar
  3. 3.
    Sarychev, A.V.: First- and second-order integral functionals of the calculus of variations which exhibit the Lavrentiev phenomenon. J. Dyn. Control Syst. 3(4), 565–588 (1997) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Torres, D.F.M.: Lipschitzian regularity of the minimizing trajectories for nonlinear optimal control problems. Math. Control Signals Syst. 16(2–3), 158–174 (2003) zbMATHCrossRefGoogle Scholar
  5. 5.
    Bryson, A., Ho, Y.C.: Applied Optimal Control. Hemisphere, New York (1975) Google Scholar
  6. 6.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1983) zbMATHGoogle Scholar
  7. 7.
    Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. Studies in Mathematics and its Applications, vol. 6. North-Holland, Amsterdam (1979) zbMATHGoogle Scholar
  9. 9.
    Pontryagin, L., Boltyanskii, V., Gramkrelidze, R., Mischenko, E.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962) zbMATHGoogle Scholar
  10. 10.
    Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967) zbMATHGoogle Scholar
  11. 11.
    Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: In: Optimal Control. Contemp. Soviet Mathematics (1987) Google Scholar
  12. 12.
    Agrachev, A., Sachkov, Y.: Control Theory from the Geometric Viewpoint. Encyclopaedia Math. Sciences, vol. 87. Springer, Berlin (2004) zbMATHGoogle Scholar
  13. 13.
    Clarke, F.H., Vinter, R.: The relationship between the maximum principle and dynamic programming. SIAM J. Control Optim. 25(5), 1291–1311 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bonnard, B., Chyba, M.: The Role of Singular Trajectories in Control Theory. Springer, Berlin (2003) Google Scholar
  15. 15.
    Trélat, E.: In: Contrôle Optimal: Théorie & Applications. Collection “Mathématiques Concrètes”. Vuibert, Paris (2005). (In French) 246 pp. Google Scholar
  16. 16.
    Haberkorn, T., Trélat, E.: Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM J. Control Optim. 49(4), 1498–1522 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Agrachev, A., Sarychev, A.: On abnormal extremals for Lagrange variational problems. J. Math. Syst. Estim. Control 8(1), 87–118 (1998) MathSciNetGoogle Scholar
  18. 18.
    Bonnard, B., Caillau, J.-B., Trélat, E.: Second order optimality conditions in the smooth case and applications in optimal control. ESAIM Control Optim. Calc. Var. 13(2), 207–236 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Rifford, L., Trélat, E.: Morse–Sard type results in sub-Riemannian geometry. Math. Ann. 332(1), 145–159 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Trélat, E.: Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control Syst. 6(4), 511–541 (2000) zbMATHCrossRefGoogle Scholar
  21. 21.
    Arutyunov, A.V., Okoulevitch, A.I.: Necessary optimality conditions for optimal control problems with intermediate constraints. J. Dyn. Control Syst. 4(1), 49–58 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Garavello, M., Piccoli, B.: Hybrid necessary principle. SIAM J. Control Optim. 43(5), 1867–1887 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Shaikh, M.S., Caines, P.E.: On the hybrid optimal control problem: theory and algorithms. IEEE Trans. Autom. Control 52(9), 1587–1603 (2007) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vinter, R.: Optimal Control (Systems & Control: Foundations & Applications). Birkäuser, Boston (2000) Google Scholar
  25. 25.
    Bonnard, B., Faubourg, L., Trélat, E.: Mécanique Céleste et Contrôle de Systèmes Spatiaux. In: Math. & Appl., vol. 51, Springer, Berlin (2006). XIV, 276 pp. Google Scholar
  26. 26.
    Jacobson, D.H., Lele, M.M., Speyer, J.L.: New necessary conditions of optimality for control problems with state-variable inequality constraints. J. Math. Anal. Appl. 35, 255–284 (1971) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Maurer, H.: On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim. 15, 345–362 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Arutyunov, A.V.: Optimality Conditions. Abnormal and Degenerate Problems. Mathematics and Its Applications, vol. 526. Kluwer Academic, Dordrecht (2000) zbMATHGoogle Scholar
  29. 29.
    Bonnans, J.F., Hermant, A.: Revisiting the analysis of optimal control problems with several state constraints. Control Cybern. 38, 1021–1052 (2009) MathSciNetzbMATHGoogle Scholar
  30. 30.
    Bonnard, B., Faubourg, L., Launay, G., Trélat, E.: Optimal control with state constraints and the space shuttle re-entry problem. J. Dyn. Control Syst. 9(2), 155–199 (2003) zbMATHCrossRefGoogle Scholar
  31. 31.
    Bonnard, B., Trélat, E.: Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale. ESAIM Control Optim. Calc. Var. 7, 179–222 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Robbins, H.: Junction phenomena for optimal control with state-variable inequality constraints of third order. J. Optim. Theory Appl. 31(1), 85–99 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Bonnard, B., Kupka, I.: Generic properties of singular trajectories. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14(2), 167–186 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Chitour, Y., Jean, F., Trélat, E.: Propriétés génériques des trajectoires singulières. C. R. Math. Acad. Sci. Paris 337(1), 49–52 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Chitour, Y., Jean, F., Trélat, E.: Genericity results for singular curves. J. Differ. Geom. 73(1), 45–73 (2006) zbMATHGoogle Scholar
  36. 36.
    Chitour, Y., Jean, F., Trélat, E.: Singular trajectories of control-affine systems. SIAM J. Control Optim. 47(2), 1078–1095 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Rifford, L., Trélat, E.: On the stabilization problem for nonholonomic distributions. J. Eur. Math. Soc. 11(2), 223–255 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Maurer, H., Zowe, J.: First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program. 16(1), 98–110 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Sarychev, A.V.: The index of second variation of a control system. Math. USSR Sb. 41, 383–401 (1982) CrossRefGoogle Scholar
  40. 40.
    Bonnard, B., Kupka, I.: Théorie des singularités de l’application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal. Forum Math. 5(2), 111–159 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Milyutin, A.A., Osmolovskii, N.P.: Calculus of Variations and Optimal Control. Transl. Math. Monogr., vol. 180. AMS, Providence (1998) zbMATHGoogle Scholar
  42. 42.
    Zeidan, V.: The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency. SIAM J. Control Optim. 32, 1297–1321 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Trélat, E.: Asymptotics of accessibility sets along an abnormal trajectory. ESAIM Control Optim. Calc. Var. 6, 387–414 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Silva, C.J., Trélat, E.: Asymptotic approach on conjugate points for minimal time bang-bang controls. Syst. Control Lett. 59(11), 720–733 (2010) zbMATHCrossRefGoogle Scholar
  45. 45.
    Maurer, H., Büskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the verification of second order sufficient conditions for bang-bang controls. Optim. Control Appl. Methods 26, 129–156 (2005) CrossRefGoogle Scholar
  46. 46.
    Silva, C.J., Trélat, E.: Smooth regularization of bang-bang optimal control problems. IEEE Trans. Autom. Control 55(11), 2488–2499 (2010) CrossRefGoogle Scholar
  47. 47.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1983) Google Scholar
  48. 48.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Duxbury Press, N. Scituate (2002). 540 pp. Google Scholar
  49. 49.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998) zbMATHCrossRefGoogle Scholar
  51. 51.
    Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. Advances in Design and Control, vol. 19. SIAM, Philadelphia (2010) zbMATHCrossRefGoogle Scholar
  52. 52.
    Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41(3), 307–335 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. In: New Trends in Nonlinear Dynamics and Control and Their Applications. Lecture Notes in Control and Inform. Sci., vol. 295, pp. 327–342. Springer, Berlin (2003) CrossRefGoogle Scholar
  54. 54.
    Lasserre, J.-B., Henrion, D., Prieur, C., Trélat, E.: Nonlinear optimal control via occupation measures and LMI-relaxations. SIAM J. Control Optim. 47(4), 1643–1666 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Monographs on Applied and Computational Mathematics, vol. 3. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  56. 56.
    Maurer, H.: Numerical solution of singular control problems using multiple shooting techniques. J. Optim. Theory Appl. 18(2), 235–257 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Bonnans, F., Martinon, P., Trélat, E.: Singular arcs in the generalized Goddard’s problem. J. Optim. Theory Appl. 139(2), 439–461 (2008) MathSciNetCrossRefGoogle Scholar
  58. 58.
    Aronna, M.S., Bonnans, J.F., Martinon, P.: A well-posed shooting algorithm for optimal control problems with singular arcs. Preprint INRIA RR 7763 (2011) Google Scholar
  59. 59.
    Bonnans, J.F., Hermant, A.: Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26(2), 561–598 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Hager, W.W.: Runge–Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Bonnans, F., Laurent-Varin, J.: Computation of order conditions for symplectic partitioned Runge–Kutta schemes with application to optimal control. Numer. Math. 103, 1–10 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Ross, I.M.: A roadmap for optimal control: the right way to commute. Ann. N.Y. Acad. Sci. 1065, 210–231 (2006) CrossRefGoogle Scholar
  63. 63.
    Zuazua, E.: Propagation, observation, control and numerical approximation of waves approximated by finite difference method. SIAM Rev. 47(2), 197–243 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Labbé, S., Trélat, E.: Uniform controllability of semidiscrete approximations of parabolic control systems. Syst. Control Lett. 55(7), 597–609 (2006) zbMATHCrossRefGoogle Scholar
  65. 65.
    von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37, 357–373 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23, no. 1/2 (1994) Google Scholar
  67. 67.
    Grimm, W., Markl, A.: Adjoint estimation from a direct multiple shooting method. J. Optim. Theory Appl. 92(2), 262–283 (1997) MathSciNetCrossRefGoogle Scholar
  68. 68.
    Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings 9th IFAC, pp. 243–247. (1984) Google Scholar
  69. 69.
    Gerdts, M.: Direct shooting method for the numerical solution of higher-index DAE optimal control problems. J. Optim. Theory Appl. 117(2), 267–294 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Harpold, J., Graves, C.: Shuttle entry guidance. J. Astronaut. Sci. 27, 239–268 (1979) Google Scholar
  71. 71.
    Bonnard, B., Faubourg, L., Trélat, E.: Optimal control of the atmospheric arc of a space shuttle and numerical simulations by multiple-shooting techniques. Math. Models Methods Appl. Sci. 15(1), 109–140 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Trélat, E.: Optimal control of a space shuttle and numerical simulations. Discrete Contin. Dyn. Syst.(suppl.), 842–851 (2003) Google Scholar
  73. 73.
    Chow, W.-L.: Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1939) (German) MathSciNetCrossRefGoogle Scholar
  74. 74.
    Brunovsky, P.: Every normal linear system has a regular synthesis. Math. Slovaca 28, 81–100 (1978) MathSciNetzbMATHGoogle Scholar
  75. 75.
    Brunovsky, P.: Existence of regular synthesis for general problems. J. Differ. Equ. 38, 317–343 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  77. 77.
    Sussmann, H.J., Jurdjevic, V.: Controllability of nonlinear systems. J. Differ. Equ. 12, 95–116 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Brockett, R.W.: Lie algebras and Lie groups in control theory In: Mayne, D.Q., Brockett, R.W. (eds.) Geometric Methods in System Theory, pp. 43–82. Reidel, Dordrecht (1973) CrossRefGoogle Scholar
  79. 79.
    Hermes, H.: Lie algebras of vector fields and local approximation of attainable sets. SIAM J. Control Optim. 16, 715–727 (1974) MathSciNetCrossRefGoogle Scholar
  80. 80.
    Krener, A.J., Schättler, H.: The structure of small-time reachable sets in low dimensions. SIAM J. Control Optim. 27(1), 120–147 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Agrachev, A., Sigalotti, M.: On the local structure of optimal trajectories in ℝ3. SIAM J. Control Optim. 42(2), 513–531 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Sigalotti, M.: Local regularity of optimal trajectories for control problems with general boundary conditions. J. Dyn. Control Syst. 11(1), 91–123 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Sussmann, H.J.: In: Lie Brackets, Real Analyticity and Geometric Control, Differential Geometric Control Theory, Houghton, Mich., 1982. Progr. Math., vol. 27, pp. 1–116. Birkhäuser Boston, Boston (1983) Google Scholar
  84. 84.
    Sussmann, H.J., Piccoli, B.: Regular synthesis and sufficient conditions for optimality. SIAM J. Control Optim. 39(2), 359–410 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Kupka, I.: Geometric theory of extremals in optimal control problems. I. The fold and maxwell case. Transl. Am. Math. Soc. 299(1), 225–243 (1987) MathSciNetzbMATHGoogle Scholar
  86. 86.
    Kupka, I.: The ubiquity of fuller’s phenomenon, nonlinear controllability and optimal control. In: Monogr. Textbooks Pure Appl. Math., vol. 133, pp. 313–350. Dekker, New York (1990) Google Scholar
  87. 87.
    Caillau, J.-B., Daoud, B.: Minimum time control of the restricted three-body problem. Preprint (2011) Google Scholar
  88. 88.
    Agrachev, A., Charlot, G., Gauthier, J.-P., Zakalyukin, V.: On sub-Riemannian caustics and wave fronts for contact distributions in the three-space. J. Dyn. Control Syst. 6(3), 365–395 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Boscain, U., Piccoli, B.: Morse properties for the minimum time function on 2D manifolds. J. Dyn. Control Syst. 7(3), 385–423 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Agrachev, A., Boscain, U., Charlot, G., Ghezzi, R., Sigalotti, M.: Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27(3), 793–807 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Miele, A.: Extremization of linear integrals by Green’s theorem. In: Leitmann, G. (ed.) Optimization Technics, pp. 69–98. Academic Press, New York (1962) Google Scholar
  92. 92.
    Boscain, U., Piccoli, B.: Optimal syntheses for control systems on 2-D manifolds. In: Math. & Appl., vol. 43. Springer, Berlin (2004) Google Scholar
  93. 93.
    Agrachev, A., Zelenko, I.: Geometry of Jacobi curves. J. Dyn. Control Syst. 8(1–2), 93–140 (2002). (Part I), 167–215 (Part II) MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002) zbMATHGoogle Scholar
  95. 95.
    Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems. Texts in Applied Mathematics, vol. 49. Springer, New York (2005) zbMATHGoogle Scholar
  96. 96.
    Bressan, A., Piccoli, B.: In: Introduction to the Mathematical Theory of Control. AIMS Series on Applied Mathematics, vol. 2 Springfield, MO (2007). Google Scholar
  97. 97.
    Schättler, H., Ledzewicz, U.: Geometric Optimal Control, Theory, Methods, Examples. Springer, Berlin (2012). (to appear) CrossRefGoogle Scholar
  98. 98.
    Sussmann, H.J.: The structure of time-optimal trajectories for single-input systems in the plane: the C nonsingular case. SIAM J. Control Optim. 25(2), 433–465 (1987) MathSciNetCrossRefGoogle Scholar
  99. 99.
    Moreno, J.: Optimal time control of bioreactors for the wastewater treatment. Optim. Control Appl. Methods 20(3), 145–164 (1999) CrossRefGoogle Scholar
  100. 100.
    Sigalotti, M.: Local regularity of optimal trajectories for control problems with general boundary conditions. J. Dyn. Control Syst. 11(1), 91–123 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Zelikin, M.I., Borisov, V.F.: Theory of Chattering Control. With Applications to Astronautics, Robotics, Economics, and Engineering, Systems & Control: Foundations & Applications. Birkhäuser Boston, Boston (1994) zbMATHGoogle Scholar
  102. 102.
    Bonnard, B., Caillau, J.-B.: Geodesic flow of the averaged controlled Kepler equation. Forum Math. 21(5), 797–814 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Goh, B.S.: Necessary conditions for singular extremals involving multiple control variables. SIAM J. Control 4(4), 716–731 (1966) MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Allgower, E., Georg, K.: Numerical Continuation Methods. An Introduction. Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990) zbMATHCrossRefGoogle Scholar
  105. 105.
    Rheinboldt, W.C.: Numerical continuation methods: a perspective. J. Comput. Appl. Math. 124, 229–244 (2000). Numerical Analysis 2000, vol. IV, Optimization and Nonlinear Equations MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Watson, L.T.: Probability-one homotopies in computational science. J. Comput. Appl. Math. 140, 785–807 (2002). Proceedings of the 9th International Congress on Computational and Applied Mathematics, Leuven (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Trélat, E.: Global subanalytic solutions of Hamilton–Jacobi type equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23(3), 363–387 (2006) zbMATHCrossRefGoogle Scholar
  108. 108.
    Trélat, E.: Singular trajectories and subanalyticity in optimal control and Hamilton–Jacobi theory. Rend. Semin. Mat. (Torino) 64(1), 97–109 (2006) zbMATHGoogle Scholar
  109. 109.
    Bonnard, B., Trélat, E.: On the role of abnormal minimizers in sub-Riemannian geometry. Ann. Fac. Sci. Toulouse Math. (6) 10(3), 405–491 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Bonnard, B., Shcherbakova, N., Sugny Dominique, D.: The smooth continuation method in optimal control with an application to quantum systems ESAIM control optim. Calc. Var. 17(1), 267–292 (2011) MathSciNetzbMATHGoogle Scholar
  111. 111.
    Bonnans, J.F., Hermant, A.: Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods. ESAIM Control Optim. Calc. Var. 14(4), 825–863 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Chow, S.N., Mallet-Paret, J., Yorke, J.A.: Finding zeros of maps: homotopy methods that are constructive with probability one. Math. Comput. 32, 887–899 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Caillau, J.-B., Cots, O., Gergaud, J.: Differential continuation for regular optimal control problems. Optim. Methods Softw. 27(2), 177–196 (2012). Special issue dedicated to Andreas Griewank on the occasion of his 60th birthday zbMATHCrossRefGoogle Scholar
  114. 114.
    Haberkorn, T.: Transfert orbital à poussée faible avec minimisation de la consommation: résolution par homotopie différentielle. PhD Thesis, Toulouse (2004) Google Scholar
  115. 115.
    Martinon, P.: Numerical resolution of optimal control problems by a piecewise linear continuation method. PhD Thesis, Toulouse (2005) Google Scholar
  116. 116.
    Watson, L.T., Sosonkina, M., Melville, R.C., Morgan, A.P., Walker, H.F.: Algorithm777: HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms. ACM Trans. Math. Softw. 23, 514–549 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Bonnard, B., Caillau, J.-B., Trélat, E.: Geometric optimal control of elliptic Keplerian orbits. Discrete Contin. Dyn. Syst., Ser. B 5(4), 929–956 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Caillau, J.-B., Gergaud, J., Noailles, J.: 3D geosynchronous transfer of a satellite: continuation on the thrust. J. Optim. Theory Appl. 118(3), 541–565 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Gergaud, J., Haberkorn, T.: Homotopy method for minimum consumption orbit transfer problem. ESAIM Control Optim. Calc. Var. 12(2), 294–310 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Gergaud, J., Haberkorn, T., Martinon, P.: Low thrust minimum fuel orbital transfer: an homotopic approach. J. Guid. Control Dyn. 27(6), 1046–1060 (2004) CrossRefGoogle Scholar
  121. 121.
    Epenoy, R., Geffroy, S.: Optimal low-thrust transfers with constraints: generalization of averaging techniques. Acta Astronaut. 41(3), 133–149 (1997) CrossRefGoogle Scholar
  122. 122.
    Cerf, M., Haberkorn, T., Trélat, E.: Continuation from a flat to a round earth model in the coplanar orbit transfer problem. Opt. Control Appl. Methods (2012). doi: 10.1002/oca.1016 To appear, 28 pp. Google Scholar
  123. 123.
    Hermant, A.: Optimal control of the atmospheric reentry of a space shuttle by an homotopy method. Opt. Cont. Appl. Methods 32, 627–646 (2011) MathSciNetGoogle Scholar
  124. 124.
    Hermant, A.: Homotopy algorithm for optimal control problems with a second-order state constraint. Appl. Math. Optim. 61(1), 85–127 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    Bonnans, F., Laurent-Varin, J., Martinon, P., Trélat, E.: Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher. J. Guid. Control Dyn. 32(1), 51–55 (2009) CrossRefGoogle Scholar
  126. 126.
    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-body Problem and Space Mission Design. Springer, Berlin (2008) Google Scholar
  127. 127.
    Moser, J.: On the generalization of a theorem of A. Lyapunov. Commun. Pure Appl. Math. 11, 257–271 (1958) zbMATHCrossRefGoogle Scholar
  128. 128.
    Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian dynamical systems and the N-body problem. In: Applied Math. Sci., vol. 90. Springer, New York (1992) Google Scholar
  129. 129.
    Farquhar, R.W.: A halo-orbit lunar station. Astronaut. Aerosp. 10(6), 59–63 (1972) Google Scholar
  130. 130.
    Gómez, G., Masdemont, J., Simó, C.: Lissajous orbits around halo orbits. Adv. Astronaut. Sci. 95, 117–134 (1997) Google Scholar
  131. 131.
    Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial three-body problem. Nonlinearity 17, 1571–1606 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Archambeau, G., Augros, P., Trélat, E.: Eight Lissajous orbits in the Earth–Moon system. Maths Action 4(1), 1–23 (2011) zbMATHCrossRefGoogle Scholar
  133. 133.
    Farquhar, R.W., Dunham, D.W., Guo, Y., McAdams, J.V.: Utilization of libration points for human exploration in the Sun-Earth-Moon system and beyond. Acta Astronaut. 55(3–9), 687–700 (2004) CrossRefGoogle Scholar
  134. 134.
    Renk, F., Hechler, M., Messerschmid, E.: Exploration missions in the Sun–Earth–Moon system: A detailed view on selected transfer problems. Acta Astronaut. 67(1–2), 82–96 (2010) CrossRefGoogle Scholar
  135. 135.
    Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Low-energy, low-thrust transfers to the moon. Celest. Mech. Dyn. Astron. 105(1–3), 61–74 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    Picot, G.: Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth–Moon system using low propulsion. Discrete Contin. Dyn. Syst., Ser. B 17(1), 245–269 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Cerf, M.: Multiple space debris collecting mission: debris selection and trajectory optimization. Preprint Hal (2011) Google Scholar
  138. 138.
    Coron, J.-M.: Control and Nonlinearity. Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, Providence (2007) zbMATHGoogle Scholar
  139. 139.
    Kubrusly, C.S., Malebranche, H.: Sensors and controllers location in distributed systems—a survey. Automatica 21, 117–128 (1985) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.CNRS UMR 7598, Laboratoire Jacques-Louis LionsUniversité Pierre et Marie Curie (Univ. Paris 6) and Institut Universitaire de FranceParisFrance

Personalised recommendations