Journal of Optimization Theory and Applications

, Volume 154, Issue 3, pp 904–915 | Cite as

Convergence Rate of the Pham Dinh–Le Thi Algorithm for the Trust-Region Subproblem

  • Hoang Ngoc TuanEmail author


We obtain sufficient conditions for the linear convergence of the iterative sequences produced by the Pham Dinh–Le Thi algorithm for the trust-region subproblem. In addition, we give two examples to show that, if the sufficient conditions are not satisfied, then the sequences may not be linearly convergent.


Trust-region subproblem KKT point Lagrange multiplier DCA sequence Convergence rate 



This research was supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam. The author would like to thank Professor Nguyen Dong Yen for fruitful discussions on the topic, the two anonymous referees, and Professor Masao Fukushima for valuable comments, which have helped to improve greatly the presentation.


  1. 1.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: In: Trust-Region Methods. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2000) CrossRefGoogle Scholar
  2. 2.
    Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Pham Dinh, T., Le Thi, H.A.: A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8, 476–505 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Le Thi, H.A., Pham Dinh, T., Yen, N.D.: Behavior of DCA sequences for solving the trust-region subproblem. J. Glob. Optim. (2010). Online First. doi: 10.1007/s10898-011-9696-z Google Scholar
  5. 5.
    Tuan, H.N., Yen, N.D.: Convergence of Pham Dinh–Le Thi algorithm for the trust-region subproblem. J. Glob. Optim. (2011). Online First. doi: 10.1007/s10898-011-9820-0 Google Scholar
  6. 6.
    Martinez, J.M.: Local minimizers of quadratic functions on Euclidean balls and spheres. SIAM J. Optim. 4, 159–176 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Pham Dinh, T., Le Thi, H.A.: Lagrangian stability and global optimality on nonconvex quadratic minimization over Euclidean balls and spheres. J. Convex Anal. 2, 263–276 (1995) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford University Press, New York (2002) zbMATHGoogle Scholar
  9. 9.
    Stoer, J., Burlish, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsHanoi Pedagogical University No. 2Phuc YenVietnam

Personalised recommendations