Journal of Optimization Theory and Applications

, Volume 154, Issue 2, pp 462–490 | Cite as

A Generalization of the Classical αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms

  • A. Skjäl
  • T. Westerlund
  • R. Misener
  • C. A. FloudasEmail author


The classical αBB method determines univariate quadratic perturbations that convexify twice continuously differentiable functions. This paper generalizes αBB to additionally consider nondiagonal elements in the perturbation Hessian matrix. These correspond to bilinear terms in the underestimators, where previously all nonlinear terms were separable quadratic terms. An interval extension of Gerschgorin’s circle theorem guarantees convexity of the underestimator. It is shown that underestimation parameters which are optimal, in the sense that the maximal underestimation error is minimized, can be obtained by solving a linear optimization model.

Theoretical results are presented regarding the instantiation of the nondiagonal underestimator that minimizes the maximum error. Two special cases are analyzed to convey an intuitive understanding of that optimally-selected convexifier. Illustrative examples that convey the practical advantage of these new αBB underestimators are presented.


Global optimization αBB Convex relaxations Nonconvex optimization 



A.S. gratefully acknowledges financial support from the Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University. C.A.F and R.M. are thankful for support from the National Science Foundation (CBET – 0827907). This material is based upon work supported by the National Science Foundation Graduate Research Fellowship to R.M. under Grant No. DGE-0646086.


  1. 1.
    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general twice differentiable NLPs-II. Implementation and computional results. Comput. Chem. Eng. 22, 1159–1179 (1998) CrossRefGoogle Scholar
  2. 2.
    Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for general twice differentiable NLPs-I. Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998) CrossRefGoogle Scholar
  3. 3.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995) zbMATHGoogle Scholar
  5. 5.
    Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (2000) Google Scholar
  6. 6.
    Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45, 3–38 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Floudas, C.A., Pardalos, P.M.: State-of-the-art in global optimization—computational methods and applications—preface. J. Glob. Optim. 7, 113 (1995) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005) CrossRefGoogle Scholar
  9. 9.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1999) zbMATHGoogle Scholar
  10. 10.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Norwell (2002) zbMATHGoogle Scholar
  11. 11.
    Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underestimators: Box-constrained NLP problems. J. Glob. Optim. 29, 249–264 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Akrotirianakis, I.G., Floudas, C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Glob. Optim. 30, 367–390 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Akrotirianakis, I.G., Meyer, C.A., Floudas, C.A.: The role of the off-diagonal elements of the Hessian matrix in the construction of tight convex underestimators for nonconvex functions. In: Discovery Through Product and Process Design. Foundations of Computer-Aided Process Design, pp. 501–504 (2004) Google Scholar
  14. 14.
    Liu, W.B., Floudas, C.A.: A remark on the GOP algorithm for global optimization. J. Glob. Optim. 3, 519–521 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7, 143–182 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. (2010). doi: 10.1007/s10107-010-0351-0 Google Scholar
  17. 17.
    Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: A computational approach. In: Abraham, A., Hassanien, A.E., Siarry, P. (eds.) Foundations of Computational Intelligence, vol. 3, pp. 153–234. Springer, New York (2009) Google Scholar
  18. 18.
    Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4–5), 457–478 (1999) CrossRefGoogle Scholar
  19. 19.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part 1—convex underestimating problems. Math. Program. 10, 147–175 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20, 573–601 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51, 569–606 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52, 1–28 (2011) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gatzke, E.P., Tolsma, J.E., Barton, P.I.: Construction of convex relaxations using automated code generation techniques. Optim. Eng. 3, 305–326 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of MINLP problems in process synthesis and design. Comput. Chem. Eng. 21(Suppl. S), S445–S450 (1997) Google Scholar
  26. 26.
    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46, 1769–1797 (2000) CrossRefGoogle Scholar
  27. 27.
    Maranas, C.D., Floudas, C.A.: A global optimization approach for Lennard-Jones microclusters. J. Chem. Phys. 97, 7667–7678 (1992) CrossRefGoogle Scholar
  28. 28.
    Zlobec, S.: On the Liu-Floudas convexification of smooth programs. J. Glob. Optim. 32, 401–407 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Zlobec, S.: Characterization of convexifiable functions. Optimization 55, 251–261 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Zlobec, S.: Saddle-point optimality: A look beyond convexity. J. Glob. Optim. 29, 97–112 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zlobec, S.: On two simple decompositions of Lipschitz functions. Optimization 57, 249–261 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. Glob. Optim. 9, 23–40 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Chang, M.H., Park, Y.C., Lee, T.Y.: A new global optimization method for univariate constrained twice-differentiable NLP problems. J. Glob. Optim. 39, 79–100 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Birgin, E., Floudas, C.A., Martínez, J.: Global minimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program. 125, 139–162 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Bravo, J.M., Alamo, A.T., Redondo, M.J., Camacho, E.F.: An algorithm for bounded-error identification of nonlinear systems based on DC functions. Automatica 44, 437–444 (2008) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Esposito, W.R., Floudas, C.A.: Global optimization in parameter estimation of nonlinear algebraic models via the error-in-variables approach. Ind. Eng. Chem. Res. 37, 1841–1858 (1998) CrossRefGoogle Scholar
  38. 38.
    Esposito, W.R., Floudas, C.A.: Deterministic global optimization in nonlinear optimal control problems. J. Glob. Optim. 17, 97–126 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Esposito, W.R., Floudas, C.A.: Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39, 1291–1310 (2000) CrossRefGoogle Scholar
  40. 40.
    Esposito, W.R., Floudas, C.A.: Deterministic global optimization in isothermal reactor network synthesis. J. Glob. Optim. 22, 59–95 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18, 1187–1208 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Floudas, C.A., Gümüs, Z.H., Ierapetritou, M.G.: Global optimization in design under uncertainty: feasibility test and flexibility index problems. Ind. Eng. Chem. Res. 40, 4267–4282 (2001) CrossRefGoogle Scholar
  43. 43.
    Gümüs, Z.H., Floudas, C.A.: Global optimization of nonlinear bilevel programming problems. J. Glob. Optim. 20, 1–31 (2001) zbMATHCrossRefGoogle Scholar
  44. 44.
    Klepeis, J.L., Floudas, C.A.: A comparative study of global minimum energy conformations of hydrated peptides. J. Comput. Chem. 20, 636–654 (1999) CrossRefGoogle Scholar
  45. 45.
    Klepeis, J.L., Floudas, C.A.: Free energy calculations for peptides via deterministic global optimization. J. Chem. Phys. 110, 7491–7512 (1999) CrossRefGoogle Scholar
  46. 46.
    Klepeis, J.L., Floudas, C.A.: Deterministic global optimization and torsion angle dynamics for molecular structure prediction. Comput. Chem. Eng. 24, 1761–1766 (2000) CrossRefGoogle Scholar
  47. 47.
    Klepeis, J.L., Floudas, C.A.: Ab initio tertiary structure prediction of proteins. J. Glob. Optim. 25, 113–140 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Klepeis, J.L., Floudas, C.A.: ASTRO-FOLD: a combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophys. J. 85, 2119–2146 (2003) CrossRefGoogle Scholar
  49. 49.
    Klepeis, J.L., Floudas, C.A., Morikis, D., Lambris, J.D.: Predicting peptide structures using NMR data and deterministic global optimization. J. Comput. Chem. 20, 1354–1370 (1999) CrossRefGoogle Scholar
  50. 50.
    Klepeis, J.L., Pieja, M., Floudas, C.A.: A new class of hybrid global optimization algorithms for peptide structure prediction: integrated hybrids. Comput. Phys. Commun. 151, 121–140 (2003) zbMATHCrossRefGoogle Scholar
  51. 51.
    Maranas, C.D., Floudas, C.A.: A deterministic global optimization approach for molecular-structure determination. J. Chem. Phys. 100, 1247–1261 (1994) CrossRefGoogle Scholar
  52. 52.
    McDonald, C.M., Floudas, C.A.: Decomposition based and branch and bound global optimization approaches for the phase equilibrium problem. J. Glob. Optim. 5, 205–251 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    McDonald, C.M., Floudas, C.A.: Global optimization for the phase and chemical equilibrium problem: application to the NRTL equation. Comput. Chem. Eng. 19, 1111–1141 (1995) CrossRefGoogle Scholar
  54. 54.
    McDonald, C.M., Floudas, C.A.: Global optimization for the phase stability problem. AIChE J. 41, 1798–1814 (1995) CrossRefGoogle Scholar
  55. 55.
    McDonald, C.M., Floudas, C.A.: Global optimization and analysis for the Gibbs free energy function for the UNIFAC, Wilson, and ASOG equations. Ind. Eng. Chem. Res. 34, 1674–1687 (1995) CrossRefGoogle Scholar
  56. 56.
    Mitsos, A., Lemonidis, P., Lee, C.K., Barton, P.I.: Relaxation-based bounds for semi-infinite programs. SIAM J. Optim. 19, 77–113 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Papamichail, I., Adjiman, C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Papamichail, I., Adjiman, C.S.: Proof of convergence for a global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 33, 83–107 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Zhu, Y.S., Inoue, K.: Calculation of chemical and phase equilibrium based on stability analysis by QBB algorithm: application to NRTL equation. Chem. Eng. Sci. 56, 6915–6931 (2001) CrossRefGoogle Scholar
  60. 60.
    Floudas, C.A., Kreinovich, V.: On the functional form of convex underestimators for twice continuously differentiable functions. Optim. Lett. 1, 187–192 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Floudas, C.A., Kreinovich, V.: Towards optimal techniques for solving global optimization problems: Symmetry-based approach. In: Törn, A., Zilinskas, J. (eds.) Models and Algorithms for Global Optimization, pp. 21–42. Springer, New York (2007) CrossRefGoogle Scholar
  62. 62.
    Meyer, C.A., Floudas, C.A.: Convex underestimation of twice continuously differentiable functions by piecewise quadratic perturbation: spline αBB underestimators. J. Glob. Optim. 32, 221–258 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Gounaris, C.E., Floudas, C.A.: Tight convex underestimators for \(\mathcal {C}^{2}\)-continuous problems: I. Univariate functions. J. Glob. Optim. 42, 51–67 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Gounaris, C.E., Floudas, C.A.: Tight convex underestimators for \(\mathcal {C}^{2}\)-continuous problems: II. Multivariate functions. J. Glob. Optim. 42, 69–89 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1990) zbMATHGoogle Scholar
  66. 66.
    Wolfe, M.A.: Interval mathematics, algebraic equations and optimization. J. Comput. Appl. Math. 124, 263–280 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15, 404–429 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32, 138–156 (2006) MathSciNetCrossRefGoogle Scholar
  69. 69.
    Gerschgorin, S.: Über die abgrenzung der eigenwerte einer matrix. Izv. Akad. Nauk SSSR, Ser. Fiz. Mat. 6, 749–754 (1931) Google Scholar
  70. 70.
    Tardella, F.: On a class of functions attaining their maximum at the vertices of a polyhedron. Discrete Appl. Math. 22, 191–195 (1988/89) MathSciNetCrossRefGoogle Scholar
  71. 71.
    Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Vanderbei, R.J.: Linear Programming: Foundations and Extensions. International Series in Operations Research & Management Science. Springer, Berlin (2008). ISBN 9780387743875 zbMATHCrossRefGoogle Scholar
  73. 73.
    Hertz, D., Adjiman, C.S., Floudas, C.A.: Two results on bounding the roots of interval polynomials. Comput. Chem. Eng. 23, 1333–1339 (1999) CrossRefGoogle Scholar
  74. 74.
    Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht (1999) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Skjäl
    • 1
  • T. Westerlund
    • 1
  • R. Misener
    • 2
  • C. A. Floudas
    • 2
    Email author
  1. 1.Center of Excellence in Optimization and Systems EngineeringÅbo Akademi UniversityTurkuFinland
  2. 2.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations