Journal of Optimization Theory and Applications

, Volume 154, Issue 2, pp 549–572 | Cite as

Enhancements on the Hyperplanes Arrangements in Mixed-Integer Programming Techniques

  • Ionela Prodan
  • Florin Stoican
  • Sorin Olaru
  • Silviu-Iulian Niculescu


This paper is concerned with improvements in constraints handling for mixed-integer optimization problems. The novel element is the reduction of the number of binary variables used for expressing the complement of a convex (polytopic) region. As a generalization, the problem of representing the complement of a possibly not connected union of such convex sets is detailed. In order to illustrate the benefits of the proposed improvements, a typical control application, the control of multiagent systems using receding horizon optimization techniques, is considered.


Mixed integer programming (MIP) Not convex constraints Hyperplane arrangements Cell merging 



The research of Ionela Prodan is financially supported by the EADS Corporate Foundation (091-AO09-1006). Florin Stoican’s work was carried out in Supelec, during the tenure of a CARNOT C3S fellowship. The authors would like to thank Professor Panos M. Pardalos, as well as the anonymous reviewers for their useful comments and remarks that helped in improving the overall presentation of this paper.


  1. 1.
    Grundel, D., Murphey, R., Pardalos, P.: Cooperative Systems, Control and Optimization, vol. 588. Springer, Berlin (2007) zbMATHGoogle Scholar
  2. 2.
    Grundel, D., Pardalos, P.: Theory and Algorithms for Cooperative Systems, vol. 4. World Scientific, Singapore (2004) zbMATHGoogle Scholar
  3. 3.
    Earl, M., D’Andrea, R.: Modeling and control of a multi-agent system using mixed integer linear programming. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, vol. 1, pp. 107–111 (2001) Google Scholar
  4. 4.
    Osiadacz, A.: Integer and combinatorial optimization. In: Nemhauser, G.L., Wolsey, L.A. (eds.) Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1988). International Journal of Adaptive Control and Signal Processing, 4(4), 333–344 (1990) Google Scholar
  5. 5.
    Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L.: 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art. Springer, Berlin (2009) Google Scholar
  6. 6.
    Schouwenaars, T., De Moor, B., Feron, E., How, J.: Mixed integer programming for multi-vehicle path planning. In: Proceedings of the 2nd IEEE European Control Conference, Porto, Portugal, pp. 2603–2608. (2001) Google Scholar
  7. 7.
    Richards, A., How, J.: Model predictive control of vehicle maneuvers with guaranteed completion time and robust feasibility. In: Proceedings of the 24th American Control Conference, Portland, Oregon, USA, vol. 5, pp. 4034–4040 (2005) CrossRefGoogle Scholar
  8. 8.
    Ousingsawat, J., Campbell, M.: Establishing trajectories for multi-vehicle reconnaissance. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Providence, Rhode Island, USA, pp. 2188–2199 (2004) Google Scholar
  9. 9.
    Beard, R., McLain, T., Goodrich, M., Anderson, E.: Coordinated target assignment and intercept for unmanned air vehicles. Proc. IEEE Trans. Robot. Autom. 18(6), 911–922 (2002) CrossRefGoogle Scholar
  10. 10.
    Richards, A., Bellingham, J., Tillerson, M., How, J.: Coordination and control of multiple UAVS. In: Proceedings of AIAA Guidance, Navigation and Control Conference. Monterey, CA (2002) Google Scholar
  11. 11.
    Schumacher, C., Chandler, P., Pachter, M.: UAV task assignment with timing constraints. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Austin, Texas (2003) Google Scholar
  12. 12.
    Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–428 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bemporad, A., Borrelli, F., Morari, M.: Optimal controllers for hybrid systems: stability and piecewise linear explicit form. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, NSW, Australia, pp. 1810–1815 (2000) Google Scholar
  14. 14.
    Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, Berlin (2004) zbMATHCrossRefGoogle Scholar
  16. 16.
    Bellingham, J., Richards, A., How, J.: Receding horizon control of autonomous aerial vehicles. In: Proceedings of the 21th American Control Conference, Anchorage, Alaska, USA, vol. 5, pp. 3741–3746 (2002) Google Scholar
  17. 17.
    Prodan, I., Olaru, S., Niculescu, S.: Predictive control for tight group formation of multi-agent systems. In: Proceedings of the 18th IFAC World Congress, Milano, Italy, pp. 138–143 (2011) Google Scholar
  18. 18.
    Stoican, F., Olaru, S., Seron, M., De Doná, J.: Reference governor for tracking with fault detection capabilities. In: Proceedings of the 2010 Conference on Control and Fault Tolerant Systems, Nice, France, pp. 546–551 (2010) CrossRefGoogle Scholar
  19. 19.
    Garey, M., Johnson, D.: Computers and intractability. A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. Freeman, San Francisco (1979) zbMATHGoogle Scholar
  20. 20.
    Earl, M., D’Andrea, R.: Iterative MILP methods for vehicle-control problems. IEEE Trans. Robot. 21(6), 1158–1167 (2005) CrossRefGoogle Scholar
  21. 21.
    Vitus, M., Pradeep, V., Hoffmann, G., Waslander, S.L., Tomlin, C.J.: Tunnel-milp: path planning with sequential convex polytopes. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Honolulu, Hawaii, USA (2008) Google Scholar
  22. 22.
    Stoican, F., Prodan, I., Olaru, S.: On the hyperplanes arrangements in mixed-integer techniques. In: Proceedings of the 30th American Control Conference, San Francisco, CA, USA, pp. 1898–1903 (2011) Google Scholar
  23. 23.
    Stoican, F., Prodan, I., Olaru, S.: Enhancements on the hyperplane arrangements in mixed integer techniques. In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, pp. 3986–3991 (2011) CrossRefGoogle Scholar
  24. 24.
    Olaru, S., Dumur, D.: Avoiding constraints redundancy in predictive control optimization routines. IEEE Trans. Autom. Control 50(9), 1459–1465 (2005) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Orlik, P., Terao, H.: Arrangements of Hyperplanes, vol. 300. Springer, Berlin (1992) zbMATHGoogle Scholar
  26. 26.
    Ziegler, G.: Lectures on Polytopes. Springer, Berlin (1995) zbMATHCrossRefGoogle Scholar
  27. 27.
    Orlik, P.: Hyperplane arrangements. In: Floudas, C.A., Orlik, P.M. (eds.) Encyclopedia of Optimization, pp. 1545–1547. Springer, New York (2009) CrossRefGoogle Scholar
  28. 28.
    Pardalos, P.: Hyperplane arrangements in optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1547–1548. Springer, New York (2009) CrossRefGoogle Scholar
  29. 29.
    Buck, R.: Partition of Space. Am. Math. Mon. 50(9), 541–544 (1943) zbMATHCrossRefGoogle Scholar
  30. 30.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1), 21–46 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ferrez, J.A., Fukuda, K.: Implementations of lp-based reverse search algorithms for the zonotope construction and the fixed-rank convex quadratic maximization in binary variables using the zram and the cddlib libraries. Tech. rep., Mcgill (2002) Google Scholar
  32. 32.
    Kobayashi, K., Imura, J.: Modeling of discrete dynamics for computational time reduction of Model Predictive Control. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, pp. 628–633 (2006) Google Scholar
  33. 33.
    Zaslavsky, T.: Counting the faces of cut-up spaces. Am. Math. Soc. 81, 5 (1975) MathSciNetGoogle Scholar
  34. 34.
    Geyer, T., Torrisi, F., Morari, M.: Optimal complexity reduction of piecewise affine models based on hyperplane arrangements. In: Proceedings of the 23th American Control Conference, Boston, Massachusetts, USA, vol. 2, pp. 1190–1195 (2004) Google Scholar
  35. 35.
    Geyer, T., Torrisi, F., Morari, M.: Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44(7), 1728–1740 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Rudell, R., Sangiovanni-Vincentelli, A.: Espresso-mv: algorithms for multiple-valued logic minimization. In: Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 230–234 (1985) Google Scholar
  37. 37.
    Olfati-Saber, R., Murray, R.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proceedings of the 15th IFAC World Congress, Barcelona, Spain pp. 346–352 (2002) Google Scholar
  38. 38.
    Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ionela Prodan
    • 1
    • 3
  • Florin Stoican
    • 2
  • Sorin Olaru
    • 1
  • Silviu-Iulian Niculescu
    • 3
  1. 1.Automatic Control DepartmentSUPELEC Systems Sciences (E3S)Gif sur YvetteFrance
  2. 2.Department of Engineering CyberneticsNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Laboratory of Signal and SystemsCNRS-SUPELECGif sur YvetteFrance

Personalised recommendations