Skip to main content
Log in

Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a steepest descent method with Armijo’s rule for multicriteria optimization in the Riemannian context. The sequence generated by the method is guaranteed to be well defined. Under mild assumptions on the multicriteria function, we prove that each accumulation point (if any) satisfies first-order necessary conditions for Pareto optimality. Moreover, assuming quasiconvexity of the multicriteria function and nonnegative curvature of the Riemannian manifold, we prove full convergence of the sequence to a critical Pareto point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burachik, R., Graña Drummond, L.M., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line searches. Optimization 32(2), 137–146 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kiwiel, K.C., Murty, K.: Convergence of the steepest descent method for minimizing quasiconvex functions. J. Optim. Theory Appl. 89(1), 221–226 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rapcsák, T.: Smooth Nonlinear Optimization in R n. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  7. Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8, 197–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Attouch, H., Bolte, J., Redont, P., Teboulle, M.: Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization. Optimization 53(5–6), 435–454 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Azagra, D., Ferrera, J., López-Mesas, M.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barani, A., Pouryayevali, M.R.: Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70(5), 1850–1861 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Cruz Neto, J.X., Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Convex-and monotone-transformable mathematical programming problems and a proximal-like point method. J. Glob. Optim. 35, 53–69 (2006)

    Article  MATH  Google Scholar 

  13. Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferreira, O.P.: Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313, 587–597 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ledyaev, Yu.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341(1), 467–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Wang, J.H., Li, C.: Kantorovich’s theorems of Newton’s method for mappings and optimization problems on Lie groups. IMA J. Numer. Anal. 31, 322–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J.H., Li, C.: Newton’s method on Lie groups with applications to optimization. IMA J. Numer. Anal. 31, 322–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, J.H., Lopez, G., Martin-Marquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, J.H., Dedieu, J.P.: Newton’s method on Lie groups: Smale’s point estimate theory under the γ-condition. J. Complex. 25, 128–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, J.H., Huang, S.C., Li, C.: Extended Newton’s algorithm for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13, 633–656 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008)

    Article  MATH  Google Scholar 

  27. Wang, J.H., Li, C.: Uniqueness of the singular points of vector fields on Riemannian manifolds under the γ-condition. J. Complex. 22(4), 533–548 (2006)

    Article  MATH  Google Scholar 

  28. Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal. 26(2), 228–251 (2006)

    Article  MathSciNet  Google Scholar 

  29. Bento, G.C., Melo, J.G.: A subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. (2011). doi:10.1007/s10957-011-9921-4

    Google Scholar 

  30. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Udriste, C.: Convex functions and optimization algorithms on Riemannian manifolds. In: Mathematics and Its Applications, vol. 297. Kluwer Academic, Norwell (1994)

    Google Scholar 

  32. Smith, S.T.: Optimization techniques on Riemannian Manifolds. Fields Institute Communications, vol. 3, pp. 113–146. Am. Math. Soc., Providence (1994)

    Google Scholar 

  33. da Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3(2), 89–100 (1998)

    MATH  Google Scholar 

  34. Do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    MATH  Google Scholar 

  35. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996)

    MATH  Google Scholar 

  36. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I and II. Springer, Berlin (1993)

    Google Scholar 

  37. Munier, J.: Steepest descent method on a Riemannian manifold: the convex case. Balk. J. Geom. Appl. 12(2), 98–106 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Gabay, D.: Minimizing a differentiable function over a differentiable manifold. J. Optim. Theory Appl. 37, 177–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

    Book  Google Scholar 

  40. Papa Quiroz, E.A., Oliveira, P.R.: New self-concordant barrier for the hypercube. J. Optim. Theory Appl. 135, 475–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rothaus, O.S.: Domains of positivity. Abh. Math. Semin. Univ. Hamb. 24, 189–235 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lang, S.: Fundamentals of Differential Geometry. Springer, New York (1998)

    Google Scholar 

  44. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G.C. Bento was supported in part by CNPq Grant 473756/2009-9 and PROCAD/NF. O.P. Ferreira was supported in part by CNPq Grant 302618/2005-8, PRONEX–Optimization (FAPERJ/CNPq) and FUNAPE/UFG. P.R. Oliveira was supported in part by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Bento.

Additional information

Communicated by Dinh The Luc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bento, G.C., Ferreira, O.P. & Oliveira, P.R. Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds. J Optim Theory Appl 154, 88–107 (2012). https://doi.org/10.1007/s10957-011-9984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9984-2

Keywords

Navigation