Global Optimal Solutions of Noncyclic Mappings in Metric Spaces

Article

Abstract

We study some minimization problems for noncyclic mappings in metric spaces. We then apply the solution to obtain some results in the theory of analytic functions.

Keywords

Noncyclic mapping Contraction mapping Nonexpansive mapping Fixed point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eldred, A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Abkar, A., Gabeleh, M.: Results on the existence and convergence of best proximity points. Fixed Point Theory Appl. 2010, 386037 (2010), 10 pp. MathSciNetCrossRefGoogle Scholar
  3. 3.
    Al-Thagafi, M.A., Shahzad, N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665–3671 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Suzuki, T., Kikkawa, M., Vetro, C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Derafshpour, M., Rezapour, Sh., Shahzad, N.: Best proximity points of cyclic φ-contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193–202 (2011) MathSciNetMATHGoogle Scholar
  6. 6.
    Di Bari, C., Suzuki, T., Vetro, C.: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69, 3790–3794 (2008) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Wlodarczyk, K., Plebaniak, R., Banach, A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332–3341 (2009) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Wlodarczyk, K., Plebaniak, R., Banach, A.: Erratum to: “Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces”. Nonlinear Anal. (2008). doi:10.1016/j.na.2008.04.037. Nonlinear Anal. 71(7–8), 3585–3586 (2009) Google Scholar
  9. 9.
    Abkar, A., Gabeleh, M.: Best proximity points for cyclic mappings in ordered metric spaces. J. Optim. Theory Appl. 150, 188–193 (2011) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Vetro, C.: Best proximity points: convergence and existence theorems for p-cyclic mappings. Nonlinear Anal. 73(7), 2283–2291 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Eldred, A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171(3), 283–293 (2005) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Sankar Raj, V.: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804–4808 (2011) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Khamsi, M.A., Kirk, W.A.: An Introduction to Metric Spaces and Fixed Point Theory. Wiley, New York (2001) CrossRefGoogle Scholar
  14. 14.
    Sadiq Basha, S.: Best proximity points: global optimal approximate solutions. J. Glob. Optim. (2011). doi:10.1007/s10898-009-9521-0 MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mathematics DepartmentImam Khomeini International UniversityQazvinIran

Personalised recommendations