Connections Between Single-Level and Bilevel Multiobjective Optimization

  • Sauli Ruuska
  • Kaisa Miettinen
  • Margaret M. Wiecek


The relationship between bilevel optimization and multiobjective optimization has been studied by several authors, and there have been repeated attempts to establish a link between the two. We unify the results from the literature and generalize them for bilevel multiobjective optimization. We formulate sufficient conditions for an arbitrary binary relation to guarantee equality between the efficient set produced by the relation and the set of optimal solutions to a bilevel problem. In addition, we present specially structured bilevel multiobjective optimization problems motivated by real-life applications and an accompanying binary relation permitting their reduction to single-level multiobjective optimization problems.


Two-level optimization Multiobjective programming Multicriteria optimization Binary relations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: a bibliography review. J. Glob. Optim. 5(3), 291–306 (1994) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52(3), 333–359 (2003) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic, Norwell (1998) MATHGoogle Scholar
  5. 5.
    Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic, Norwell (2002) MATHGoogle Scholar
  6. 6.
    Marcotte, P., Savard, G.: A note on the Pareto optimality of solutions to the linear bilevel programming problem. Comput. Oper. Res. 18(4), 355–359 (1991) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fülöp, J.: On the equivalency between a linear bilevel programming problem and linear optimization over the efficient set. Tech. Rep. WP 93-1, Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences (1993) Google Scholar
  8. 8.
    Glackin, J., Ecker, J.G., Kupferschmid, M.: Solving bilevel linear programs using multiple objective linear programming. J. Optim. Theory Appl. 140(2), 197–212 (2009) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Alves, M.J., Dempe, S., Júdice, J.J.: Computing the Pareto frontier of a bi-objective bi-level linear problem using a multiobjective mixed-integer programming algorithm. Optimization (2010). doi: 10.1080/02331934.2010.511674. First published on: 13 September 2010 (iFirst)
  10. 10.
    Fliege, J., Vicente, L.N.: Multicriteria approach to bilevel optimization. J. Optim. Theory Appl. 131(2), 209–225 (2006) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ivanenko, D.S., Plyasunov, A.V.: Reducibility of bilevel programming problems to vector optimization problems. J. Ind. Appl. Math. 2(2), 179–195 (2008) CrossRefGoogle Scholar
  12. 12.
    Pieume, C.O., Fotso, L.P., Siarry, P.: Solving bilevel programming problems with multicriteria optimization techniques. Opsearch 46(2), 169–183 (2009) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Calvete, H.I., Galé, C.: Linear bilevel programs with multiple objectives at the upper level. J. Comput. Appl. Math. 234(4), 950–959 (2010) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Nie, P.: A note on bilevel optimization problems. Int. J. Appl. Math. Sci. 2(1), 31–38 (2005) MathSciNetMATHGoogle Scholar
  15. 15.
    Bonnel, H., Morgan, J.: Semivectorial bilevel optimization problem: penalty approach. J. Optim. Theory Appl. 131(3), 365–382 (2006) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Nishizaki, I., Sakawa, M.: Stackelberg solutions to multiobjective two-level linear programming problems. J. Optim. Theory Appl. 103(1), 161–182 (1999) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sakawa, M., Nishizaki, I.: Cooperative and Noncooperative Multi-Level Programming. Springer, Berlin (2009) Google Scholar
  18. 18.
    Dell’Aere, A.: Numerical methods for the solution of bi-level multi-objective optimization problems. Ph.D. thesis, Universität Paderborn (2008) Google Scholar
  19. 19.
    Arora, S.R., Arora, R.: Indefinite quadratic bilevel programming problem with multiple objectives at both levels. Int. J. Opt., Theory, Methods and Appl. 1(3), 318–327 (2009) MATHGoogle Scholar
  20. 20.
    Eichfelder, G.: Multiobjective bilevel optimization. Math. Program. 123(2), 419–449 (2010) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Gebhardt, E., Jahn, J.: Global solver for nonlinear bilevel vector optimization problems. Pac. J. Optim. 5(3), 387–401 (2009) MathSciNetMATHGoogle Scholar
  22. 22.
    Shi, X., Xia, H.: Interactive bilevel multi-objective decision making. J. Oper. Res. Soc. 48(9), 943–949 (1997) MATHGoogle Scholar
  23. 23.
    Shi, X., Xia, H.S.: Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers. J. Multi-Criteria Decis. Anal. 10(1), 27–34 (2001) MATHCrossRefGoogle Scholar
  24. 24.
    Abo-Sinna, M.A., Baky, I.A.: Interactive balance space approach for solving multi-level multi-objective programming problems. Inf. Sci. 117(16), 3397–3410 (2007) CrossRefGoogle Scholar
  25. 25.
    Osman, M.S., Abo-Sinna, M.A., Amer, A.H., Emam, O.E.: A multi-level non-linear multi-objective decision-making under fuzziness. Appl. Math. Comput. 153(1), 239–252 (2004) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Zhang, G., Lu, J., Dillon, T.: Solution concepts and an approximation Kuhn–Tucker approach for fuzzy multiobjective linear bilevel programming. In: Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.) Pareto Optimality, Game Theory and Equilibria, pp. 457–480. Springer, Berlin (2008) CrossRefGoogle Scholar
  27. 27.
    Yano, H., Sakawa, M.: A fuzzy approach to hierarchical multiobjective programming problems and its application to an industrial pollution control problem. Fuzzy Sets Syst. 160(22), 3309–3322 (2009) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Baky, I.A.: Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems. Fuzzy Sets Syst. 160(18), 2701–2713 (2009) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Baky, I.A.: Solving multi-level multi-objective linear programming problems through fuzzy goal programming approach. Appl. Math. Model. 34(9), 2377–2387 (2010) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Yin, Y.: Multiobjective bilevel optimization for transportation planning and management problems. J. Adv. Transp. 36(1), 93–105 (2002) CrossRefGoogle Scholar
  31. 31.
    Deb, K., Sinha, A.: Solving bilevel multi-objective optimization problems using evolutionary algorithms. In: Ehrgott, M., Fonseca, C., Gandibleux, X., Hao, J.K., Sevaux, M. (eds.) Evolutionary Multi-Criterion Optimization: 5th International Conference, Proceedings, pp. 110–124. Springer, Berlin (2009) CrossRefGoogle Scholar
  32. 32.
    Jia, L., Wang, Y.: A genetic algorithm for multiobjective bilevel convex optimization problems. In: Proceedings of International Conference on Computational Intelligence and Security, pp. 98–102. IEEE Comput. Soc., Los Alamitos (2009) CrossRefGoogle Scholar
  33. 33.
    Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005) MATHGoogle Scholar
  34. 34.
    Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004) MATHGoogle Scholar
  35. 35.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic, Norwell (1999) MATHGoogle Scholar
  36. 36.
    Philip, J.: Algorithms for the vector maximization problem. Math. Program. 2(1), 207–229 (1972) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Benson, H.P.: An all-linear programming relaxation algorithm for optimizing over the efficient set. J. Glob. Optim. 1(1), 83–104 (1991) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Benson, H.P.: A finite, nonadjacent extreme-point search algorithm for optimization over the efficient set. J. Optim. Theory Appl. 73(1), 47–64 (1992) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Ecker, J.G., Song, J.H.: Optimizing a linear function over an efficient set. J. Optim. Theory Appl. 83(3), 541–563 (1994) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Sayin, S.: Optimizing over the efficient set using a top-down search of faces. Oper. Res. 48(1), 65–72 (2000) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Yamamoto, Y.: Optimization over the efficient set: overview. J. Glob. Optim. 22(1–4), 285–317 (2002) MATHCrossRefGoogle Scholar
  42. 42.
    Ropponen, A., Ritala, R., Pistikopoulos, E.N.: Optimization issues of the broke management system in papermaking. Comput. Chem. Eng. (2010). doi: 10.1007/s10957-011-9943-y
  43. 43.
    Eskelinen, P., Ruuska, S., Miettinen, K., Wiecek, M.M., Mustajoki, J.: A scenario-based interactive multiobjective optimization method for decision making under uncertainty. In: Antunes, C.H., Insua, D.R., Dias, L.C. (eds.) Proceedings of the 25th Mini-EURO Conference on Uncertainty and Robustness in Planning and Decision Making (URPDM2010) (2010) Google Scholar
  44. 44.
    Engau, A., Wiecek, M.M.: Interactive coordination of objective decompositions in multiobjective programming. Manag. Sci. 54(7), 1350–1363 (2008) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sauli Ruuska
    • 1
  • Kaisa Miettinen
    • 1
  • Margaret M. Wiecek
    • 1
  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations