Controllability of Damped Second-Order Impulsive Neutral Functional Differential Systems with Infinite Delay

  • G. Arthi
  • K. Balachandran


In this paper, the controllability problem is discussed for the damped second-order impulsive neutral functional differential systems with infinite delay in Banach spaces. Sufficient conditions for controllability results are derived by means of the Sadovskii fixed point theorem combined with a noncompact condition on the cosine family of operators. An example is provided to illustrate the theory.


Controllability Damped second-order differential equations Impulsive neutral differential equations Infinite delay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, Berlin (1991) Google Scholar
  2. 2.
    Hale, J.K., Kato, J.: Phase space for retarded equations with infinite delay. Funkc. Ekvacioj 21, 11–41 (1978) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Kappel, F., Schappacher, W.: Some considerations to the fundamental theory of infinite delay equations. J. Differ. Equ. 37, 141–183 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Lecture Notes in Mathematics, vol. 1473. Springer, Berlin (1991) zbMATHGoogle Scholar
  5. 5.
    Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, Harlow (1993) zbMATHGoogle Scholar
  6. 6.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) zbMATHGoogle Scholar
  7. 7.
    Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995) zbMATHCrossRefGoogle Scholar
  8. 8.
    Choisy, M., Guegan, J.F., Rohani, P.: Dynamics of infectious diseases and pulse vaccination: teasing apart the embedded resonance effects. Physica D 223, 26–35 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    D’onofrio, A.: On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett. 18, 729–732 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gao, S., Chen, L., Nieto, J.J., Torres, A.: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24, 6037–6045 (2006) CrossRefGoogle Scholar
  11. 11.
    George, R.K., Nandakumaran, A.K., Arapostathis, A.: A note on controllability of impulsive systems. J. Math. Anal. Appl. 241, 276–283 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jiang, G., Lu, Q.: Impulsive state feedback control of a predator-prey model. J. Comput. Appl. Math. 200, 193–207 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Nenov, S.: Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal. 36, 881–890 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sun, J., Zhang, Y.: Impulsive control of a nuclear spin generator. J. Comput. Appl. Math. 157, 235–242 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yang, Z.Y., Blanke, M.: A unified approach to controllability analysis for hybrid systems. Nonlinear Anal. Hybrid Syst. 1, 212–222 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speed. Arch. Ration. Mech. Anal. 31, 113–126 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Nunziato, J.W.: On heat conduction in materials with memory. Q. Appl. Math. 29, 187–204 (1971) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hernandez, E., Henriquez, H.R., Mckibben, M.A.: Existence results for abstract impulsive second-order neutral functional differential equations. Nonlinear Anal. 70, 2736–2751 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Hernandez, E., Balachandran, K., Annapoorani, N.: Existence results for a damped second order abstract functional differential equation with impulses. Math. Comput. Model. 50, 1583–1594 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lin, Y., Tanaka, N.: Nonlinear abstract wave equations with strong damping. J. Math. Anal. Appl. 225, 46–61 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Webb, G.F.: Existence and asymptotic behaviour for a strongly damped nonlinear wave equations. Can. J. Math. 32, 631–643 (1980) zbMATHCrossRefGoogle Scholar
  22. 22.
    Balachandran, K., Anandhi, E.R.: Controllability of neutral functional integrodifferential infinite delay systems in Banach spaces. Taiwan. J. Math. 8, 689–702 (2004) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Balachandran, K., Dauer, J.P.: Controllability of nonlinear systems in Banach spaces: a survey. J. Optim. Theory Appl. 115, 7–28 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Balachandran, K., Dauer, J.P., Balasubramaniam, P.: Controllability of nonlinear integrodifferential systems in Banach space. J. Optim. Theory Appl. 84, 83–91 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Chang, Y.K., Li, W.T.: Controllability of second order differential and integrodifferential inclusions in Banach spaces. J. Optim. Theory Appl. 129, 77–87 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Fu, X.: Controllability of neutral functional differential systems in abstract spaces. Appl. Math. Comput. 141, 281–296 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Liu, B.: Controllability of neutral functional differential and integrodifferential inclusions with infinite delay. J. Optim. Theory Appl. 123, 573–593 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Liu, B.: Controllability of impulsive neutral functional differential inclusions with infinite delay. Nonlinear Anal. 60, 1533–1552 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Li, M.L., Wang, M.S., Zhang, F.Q.: Controllability of impulsive functional differential systems in Banach spaces. Chaos Solitons Fractals 29, 175–181 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Chang, Y.K.: Controllability of impulsive functional differential systems with infinite delay in Banach spaces. Chaos Solitons Fractals 33, 1601–1609 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Park, J.Y., Balachandran, K., Arthi, G.: Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces. Nonlinear Anal. Hybrid Syst. 3, 184–194 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. North-Holland, Amsterdam (1985) zbMATHGoogle Scholar
  33. 33.
    Travis, C.C., Webb, G.F.: Compactness, regularity and uniform continuity properties of strongly continuous cosine families. Houst. J. Math. 3, 555–567 (1977) MathSciNetzbMATHGoogle Scholar
  34. 34.
    Kisynski, J.: On cosine operator functions and one parameter group of operators. Stud. Math. 49, 93–105 (1972) MathSciNetGoogle Scholar
  35. 35.
    Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32, 76–96 (1978) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sadovskii, B.N.: On a fixed point principle. Funct. Anal. Appl. 1, 74–76 (1967) MathSciNetGoogle Scholar
  37. 37.
    Ntouyas, S.K., O’Regan, D.: Some remarks on controllability of evolution equations in Banach spaces. Electron. J. Differ. Equ. 79, 1–6 (2009) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations