Journal of Optimization Theory and Applications

, Volume 152, Issue 2, pp 496–516 | Cite as

Global Synchronization Stability for Stochastic Complex Dynamical Networks with Probabilistic Interval Time-Varying Delays

Article

Abstract

The synchronization problem for a class of complex dynamical networks with stochastic disturbances and probabilistic interval time-varying delays is investigated. Based on the stochastic analysis techniques and properties of the Kronecker product, some delay-dependent asymptotical synchronization stability criteria are derived in the form of linear matrix inequalities (LMIs). The solvability of derived conditions depends not only on the size of the delay, but also on the probability of Bernoulli stochastic variables. A numerical example is given to illustrate the feasibility and effectiveness of the proposed method.

Keywords

Stochastic complex dynamical networks Synchronization stability Time-varying delay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldana, M.: Boolean dynamics of networks with scale-free topology. Physica D. Nonlinear Phenom. 185, 45–66 (2003) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Dangalchev, C.: Generation models for scale-free networks. Physica A. Stat. Mech. Appl. 338, 659–671 (2004) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Li, Z., Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. II, Express Briefs 53, 28–33 (2006) CrossRefGoogle Scholar
  4. 4.
    Liang, J., Wang, Z., Liu, X.: Exponential synchronization of stochastic delayed discrete-time complex networks. Nonlinear Dyn. 53, 153–165 (2008) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Wang, X., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 3, 6–20 (2003) CrossRefGoogle Scholar
  6. 6.
    Gao, H., Lam, J., Chen, G.: New criteria for synchronization stability of general complex dynamical networks with coupling delays. Phys. Lett. A 360, 263–273 (2006) MATHCrossRefGoogle Scholar
  7. 7.
    Li, C., Sun, W., Kurths, J.: Synchronization of complex dynamical networks with time delays. Physica A. Stat. Mech. Appl. 361, 24–34 (2006) CrossRefGoogle Scholar
  8. 8.
    Liu, X., Chen, T.: Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling. Physica A. Stat. Mech. Appl. 381, 82–92 (2007) CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Wang, Z., Liang, J.: A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances. Phys. Lett. A 372, 6066–6073 (2008) MATHCrossRefGoogle Scholar
  10. 10.
    Wang, Y., Wang, Z., Liang, J.: Global synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances. J. Phys. A, Math. Theor. 42, 135101–135111 (2009) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cao, J., Lu, J.: Adaptive synchronization of neural networks with or without time-varying delay. Chaos. Interdiscip. J. Nonlinear Sci. 16, 013133–013143 (2006) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jiang, Y.: Globally coupled maps with time delay interactions. Phys. Lett. A 267, 342–349 (2000) CrossRefGoogle Scholar
  13. 13.
    Lu, W., Chen, T.: Synchronization analysis of linearly coupled networks of discrete time systems. Physica D. Nonlinear Phenom. 198, 148–168 (2004) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Duan, Z., Chen, G., Huang, L.: Synchronization of weighted networks and complex synchronized regions. Phys. Lett. A 372, 3741–3751 (2008) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Yu, W., Cao, J., Lu, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay. SIAM J. Appl. Dyn. Syst. 7, 108–133 (2008) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hua, C., Wang, Q., Guan, X.: Global adaptive synchronization of complex networks with nonlinear delay coupling interconnections. Phys. Lett. A 368, 281–288 (2007) MATHCrossRefGoogle Scholar
  17. 17.
    Li, Z., Jiao, L., Lee, J.: Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength. Physica A. Stat. Mech. Appl. 387, 1369–1380 (2008) CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Liu, Y., Li, M., Liu, X.: Stability analysis for stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 17, 814–820 (2006) CrossRefGoogle Scholar
  19. 19.
    Liang, J., Wang, Z., Liu, Y., Liu, X.: Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances. IEEE Trans. Syst. Man Cybern., Part B 38, 1073–1083 (2008) CrossRefGoogle Scholar
  20. 20.
    Sun, Y., Cao, J., Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks. Neurocomputing 70, 2477–2485 (2007) CrossRefGoogle Scholar
  21. 21.
    Cao, J., Li, P., Wang, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. A 353, 318–325 (2006) CrossRefGoogle Scholar
  22. 22.
    Wang, Z., Liu, Y., Liu, X.: H filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities. Automatica 44, 1268–1277 (2008) CrossRefGoogle Scholar
  23. 23.
    Wang, S., Nathuji, R., Bettati, R., Zhao, W.: Providing statistical delay guarantees in wireless networks. In: International Conference on Distributed Computing Systems, vol. 24, pp. 48–57 (2004) Google Scholar
  24. 24.
    Luo, R., Chung, L.: Stabilization for linear uncertain system with time latency. IEEE Trans. Ind. Electron. 49, 905–910 (2002) CrossRefGoogle Scholar
  25. 25.
    Moon, Y., Park, P., Kwon, W.: Robust stabilization of uncertain input-delayed systems using reduction method. Automatica 37, 307–312 (2001) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Park, H., Kim, Y., Kim, D., Kwon, W.: A scheduling method for network-based control systems. IEEE Trans. Control Syst. Technol. 10, 318–330 (2002) CrossRefGoogle Scholar
  27. 27.
    Yue, D., Tian, E., Zhang, Y., Peng, C.: Delay-distribution-dependent robust stability of uncertain systems with time-varying delay. Int. J. Robust Nonlinear Control 19, 377–393 (2009) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Yue, D., Tian, E.: Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay. Neurocomputing 72, 1265–1273 (2009) CrossRefGoogle Scholar
  29. 29.
    Wang, Z., Ho, D., Liu, X.: Robust filtering under randomly varying sensor delay with variance constraints. IEEE Trans. Circuits Syst. II, Express Briefs 51, 320–326 (2004) CrossRefGoogle Scholar
  30. 30.
    Wu, M., He, Y., She, J., Liu, G.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40, 1435–1439 (2004) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Xu, S., Lam, J., Zou, Y.: New results on delay-dependent robust H control for systems with time-varying delays. Automatica 42, 343–348 (2006) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Yang, F., Wang, Z., Hung, Y., Gani, M.: H control for networked systems with random communication delays. IEEE Trans. Autom. Control 51, 511–518 (2006) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yu, W., Cao, J., Lu, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay. SIAM J. Appl. Dyn. Syst. 7, 108–133 (2008) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Langville, A., Stewart, W.: The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167, 429–447 (2004) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Mao, X.: Exponential stability of stochastic delay interval systems with Markovian switching. IEEE Trans. Autom. Control 47, 1604–1612 (2002) CrossRefGoogle Scholar
  36. 36.
    Wu, M., He, Y., She, J., Liu, G.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40, 1435–1439 (2004) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Xu, S., Lam, J.: Improved delay-dependent stability criteria for time-delay systems. IEEE Trans. Autom. Control 50, 384–387 (2005) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yue, D., Han, Q.: Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching. IEEE Trans. Autom. Control 50, 217–222 (2005) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.The College of Mathematics and Information and EngineeringJiaxing UniversityZhejingP.R. China
  2. 2.The Institute of Textile and ClothingHong Kong Polytechnic UniversityHong KongP.R. China
  3. 3.The College of Information Science and TechnologyDonghua UniversityShanghaiP.R. China
  4. 4.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations