Advertisement

Best Proximity Points: Optimal Solutions

  • S. Sadiq Basha
Article

Abstract

This article elicits a best proximity point theorem for non-self-proximal contractions. As a consequence, it ascertains the existence of an optimal approximate solution to some equations for which it is plausible that there is no solution. Moreover, an algorithm is exhibited to determine such an optimal approximate solution designated as a best proximity point. It is interesting to observe that the preceding best proximity point theorem includes the famous Banach contraction principle.

Keywords

Optimal approximate solution Fixed point Best proximity point Contraction Proximal contraction 

References

  1. 1.
    Sadiq Basha, S.: Extensions of Banach’s contraction principle. Numer. Funct. Anal. Optim. 31(5), 569–576 (2010). doi: 10.1080/01630563.2010.485713 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Al-Thagafi, M.A., Shahzad, N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10), 3665–3671 (2009) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Anthony Eldred, A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Di Bari, C., Suzuki, T., Vetro, C.: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69(11), 3790–3794 (2008) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Karpagam, S., Agrawal, S.: Best proximity point theorems for p-cyclic Meir–Keeler contractions, Fixed Point Theory Appl., 2009, Art. ID 197308, 9 pp. Google Scholar
  6. 6.
    Anuradha, J., Veeramani, P.: Proximal pointwise contraction. Topol. Appl. 156(18), 2942–2948 (2009) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximinal normal structure and relatively nonexpanisve mappings. Stud. Math. 171(3), 283–293 (2005) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Sankar Raj, V., Veeramani, P.: Best proximity pair theorems for relatively nonexpansive mappings. Appl. Gen. Topol. 10(1), 21–28 (2009) MathSciNetGoogle Scholar
  9. 9.
    Sadiq Basha, S.: Best proximity points: Global optimal approximate solutions. J. Glob. Optim. 49, 15–21 (2011) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Al-Thagafi, M.A., Shahzad, N.: Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal. 70(3), 1209–1216 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Al-Thagafi, M.A., Shahzad, N.: Best proximity sets and equilibrium pairs for a finite family of multimaps. Fixed Point Theory Appl. 2008, Art. ID 457069, 10 pp. Google Scholar
  12. 12.
    Kim, W.K., Kum, S., Lee, K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68(8), 2216–2227 (2008) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kirk, W.A., Reich, S., Veeramani, P.: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24, 851–862 (2003) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Sadiq Basha, S., Veeramani, P.: Best approximations and best proximity pairs. Acta Sci. Math. 63, 289–300 (1997) MathSciNetGoogle Scholar
  15. 15.
    Sadiq Basha, S., Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103, 119–129 (2000) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Sadiq Basha, S., Veeramani, P., Pai, D.V.: Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237–1246 (2001) MathSciNetMATHGoogle Scholar
  17. 17.
    Srinivasan, P.S.: Best proximity pair theorems. Acta Sci. Math. 67, 421–429 (2001) MATHGoogle Scholar
  18. 18.
    Wlodarczyk, K., Plebaniak, R., Banach, A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70(9), 3332–3341 (2009) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Wlodarczyk, K., Plebaniak, R., Banach, A.: Erratum to: “Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces”. Nonlinear Anal. 70, 3332–3341 (2009). Nonlinear Anal. 71, 3583–3586 (2009). doi: 10.1016/j.na.2008.04.037 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Wlodarczyk, K., Plebaniak, R., Obczynski, C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794–805 (2010) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Fan, K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112, 234–240 (1969) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Prolla, J.B.: Fixed point theorems for set valued mappings and existence of best approximations. Numer. Funct. Anal. Optim. 5, 449–455 (1982–1983) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Reich, S.: Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 62, 104–113 (1978) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Sehgal, V.M., Singh, S.P.: A generalization to multifunctions of Fan’s best approximation theorem. Proc. Am. Math. Soc. 102, 534–537 (1988) MathSciNetMATHGoogle Scholar
  25. 25.
    Sehgal, V.M., Singh, S.P.: A theorem on best approximations. Numer. Funct. Anal. Optim. 10, 181–184 (1989) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Vetrivel, V., Veeramani, P., Bhattacharyya, P.: Some extensions of Fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13, 397–402 (1992) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsAnna UniversityChennaiIndia

Personalised recommendations